The black truffle (Tuber melanosporum) is a highly revered culinary icon species that grows symbiotically with its host trees across several parts of southern Europe. Where harvested under natural or cultivated conditions, truffles can have a significant socioeconomic impact and may even form a key component of cultural identity. Although some aspects of truffle biology and ecology have been elucidated recently, the role of abiotic, environmental and climatic factors in the production and maturation of their fruitbodies is still largely unknown. Based on 36-year-long, continuous records of Mediterranean truffle yield, we demonstrate that decreased summer precipitation together with increased summer temperatures significantly reduce the fungus' subsequent winter harvest. Using state-of-the-art climate model projections, we predict that a significant decline of 78-100% in southern European truffle production is likely to occur between 2071 and 2100. The additional threats of forecasted heatwaves, forest fires, pest and disease outbreaks are discussed along with socioeconomic and ecological consequences of a warmer and dryer future climate. Our results emphasize the need for unravelling the direct and indirect effects of climate change on Europe's truffle sector and underline the importance of conservation initiatives at local to international scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.11.252 | DOI Listing |
Mycobiology
September 2024
Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia.
It is well known that the number of true truffles in the wild is decreasing. The aim of the study was to develop an effective, simple and affordable method of asci disruption to release black truffle spores. It was shown that the spore release can be achieved by different ways, such as mechanical or biological destruction.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
Truffles of the genus (Pezizales, Ascomycetes) are among the most valuable and expensive foods, but their shelf life is limited to 7-10 days when stored at 4 °C. Alternative preservation methods have been proposed to extend their shelf life, though they may alter certain quality parameters. Recently, a hypogeal display case equipped with an ultrasonic humidity system (HDC) was developed, extending the shelf life to 2-3 weeks, depending on the truffle species.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650221, China. Electronic address:
Food Res Int
October 2024
Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), C/ Miguel Servet 177 50013, Zaragoza, Spain.
The aroma is critical in the reproductive biology of truffles and in their commercial quality. However, previous research has almost exclusively focused on characterizing ripe ascocarps. We characterized the volatilome of the highly-prized black truffle (Tuber melanosporum) ascocarps from July, in an early development stage, to March, in the late harvesting season, and investigated the relationships among aroma, ascocarp growth and morphogenetic development.
View Article and Find Full Text PDFJ Sci Food Agric
November 2024
Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
Background: Truffle cultivation is evolving rapidly and new agronomic practices such as 'truffle nests' (localized peat amendments of the orchard soil) are being developed. Truffle nests improve the shape of truffles and their depth in the soil and reduce the occurrence of insect damage but have also raised concerns about their impact on the ripeness and maturity of the harvested truffles. In this study, the effect of the nests on the volatile organic compounds profile and the aromatic profile of black truffles was evaluated, as well as the existence of perceptible sensorial differences in truffles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!