Histological, SEM and three-dimensional analysis of the midfacial SMAS - New morphological insights.

Ann Anat

Department of Biological and Material Sciences in Dentistry, School of Dentistry, Faculty of Health, Witten/Herdecke University, Germany. Electronic address:

Published: March 2019

Introduction: The superficial musculoaponeurotic system (SMAS) of the midface has a complex morphological architecture, and a multitude of controversial opinions exist regarding its in vitro appearance and clinical relevance. The aim of this study was to investigate the three-dimensional architecture of the midfacial SMAS.

Method: Histological and SEM analyses were performed on tissue blocks of the skin, subcutaneous tissue and mimic musculature of the midfacial region between the anterior parotid gland pole and lateral to the nasolabial fold and tissue blocks of the skin, subcutaneous tissue and parotid fascia. Blocks were collected postmortem from six formalin-fixed donor bodies. Serial histological sections were made, stained with Azan and digitized. Three-dimensional reconstructions and visualization of the tissue blocks were performed using AutoCAD.

Results: Two different SMAS architectures were found in the midfacial region: parotideal (type IV) and preparotideal (type I) SMAS. Type I SMAS showed three-dimensional interconnecting fibrous chambers embracing fat tissue lobules that cushioned the space between the skin and mimic musculature. Fibrous septa divided the mimic musculature surrounding the muscular bundles. Beneath the mimic muscular level, SMAS septa were oriented parallel to the muscular plane. Above the mimic muscular plane, SMAS septa were oriented perpendicularly, inserted into the skin. Type IV SMAS showed a parallel alignment of the fibrous septa to the skin level, anchoring the skin to the parotid fascia, presenting lymphatic nodes in the fat tissue compartments. The fat cells of the SMAS were enveloped in a fibrotic membrane at the border of the fibro-muscular septa. The SMAS blood supply comprised two subcutaneously epimuscularly spreading anastomosing vascular systems.

Conclusions: Midfacial SMAS represents a functional unit with physical and immunological tasks appearing in two different morphological architecture types. A well-defined nomenclature is needed to prevent controversy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2018.11.004DOI Listing

Publication Analysis

Top Keywords

tissue blocks
12
mimic musculature
12
type smas
12
smas
11
histological sem
8
midfacial smas
8
morphological architecture
8
blocks skin
8
skin subcutaneous
8
subcutaneous tissue
8

Similar Publications

Left ventricular (LV) pseudoaneurysm, a rare occurrence, develops when a ruptured ventricle is encapsulated by the pericardium or scar tissue. Unlike free intrapericardial rupture, which often results in cardiac tamponade and fatal outcome, there are instances where the cardiac rupture remains contained, forming a pseudoaneurysm and averting immediate tamponade. We describe a 43-year-old male who underwent successful surgical repair of LV rupture following inferior wall myocardial infarction that resulted in the formation of a large pseudoaneurysm.

View Article and Find Full Text PDF

Background: Surgical procedures to treat anterior shoulder instability are essentially divided into those for significant bone loss and those without relevant bone loss. However, there is a gray area between these procedures that would not require bone grafting but would benefit from improved stabilization mechanisms. This study evaluates a technique based on the triple soft tissue block, the dynamic anterior stabilization of the shoulder, using an adjustable button.

View Article and Find Full Text PDF

Introduction: The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk.

View Article and Find Full Text PDF

Objective: To investigate the role of heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) in gastric cancer (GC).

Methods: HS6ST2 expression in GC and adjacent normal gastric mucosa was first detected via immunohistochemical (IHC) staining. The correlation between the expression level of HS6ST2 and clinicopathological parameters were observed.

View Article and Find Full Text PDF

Cardiac strangulation with chronic ab-extrinseco occlusion of the left-circumflex artery from an epicardial lead: a case report.

Eur Heart J Case Rep

January 2025

Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8 - 00168 Rome, Italy.

Background: Cardiac strangulation (CS) from epicardial pacing leads (EPLs) is a rare and potentially lethal mechanical complication associated with epicardial pacemaker (PM) implantation.

Case Summary: We report a case of a 44-year-old-female patient presenting with chest and left shoulder pain in the absence of reported trauma with history of congenital atrioventricular block treated with epicardial PM implantation during the childhood and subsequent transvenous reimplantation over the years. Troponin I resulted within normal values and ECG, transthoracic echocardiography and chest X-ray documented no acute cardiopulmonary findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!