Aiming at improving the protective effects of baicalin on the skin, new highly-biocompatible penetration enhancer containing vesicles (PEVs) were developed by modifying the base formulation of transfersomes with sorbitol, thus obtaining sorbitol-PEVs. An extensive evaluation of the physico-chemical features of both transfersomes and sorbitol-PEVs was carried out. Transfersomes were mainly close-packed, multi-compartment vesicles, while sorbitol-PEVs appeared mostly as single, spherical, unilamellar vesicles. All the vesicles were small in size (∼128 nm) and negatively charged (∼-67 mV), without significant differences between the formulations. The in vitro delivery of baicalin to intact skin showed an improved ability of sorbitol-PEVs to favour the deposition of the flavonoid into the whole skin. In addition, the vesicular formulations protected keratinocytes and fibroblasts from oxidative stress and UV radiation, and promoted cell proliferation and migration, which favoured the closure of skin wound. Cell uptake was promoted as well, especially when sorbitol-PEVs were used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.11.053DOI Listing

Publication Analysis

Top Keywords

enhancer vesicles
8
oxidative stress
8
stress radiation
8
vesicles
5
skin
5
sorbitol-pevs
5
sorbitol-penetration enhancer
4
vesicles loaded
4
loaded baicalin
4
baicalin protection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!