CRTH2 antagonist, CT‑133, effectively alleviates cigarette smoke-induced acute lung injury.

Life Sci

Department of Pharmacology, Zhejiang University, School of Medicine, Hangzhou City 310058, China. Electronic address:

Published: January 2019

AI Article Synopsis

Article Abstract

Aims: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), characterized by overwhelming lung inflammation, are associated with high mortality. Cigarette smoke (CS) is one of the major causes of ALI/ARDS. Since high expression of prostaglandin (PG) D has been observed in CS-induced lung injury. Currently, no effective pharmacological therapies are available to treat ALI, and supportive therapies remain the mainstay of treatment. Therefore, we investigated the protective effect of CT‑133, a newly discovered selective CRTH2 antagonist, on CS-induced ALI in vivo and in vitro.

Main Methods: CT‑133 (10 and 30 mg/kg), dexamethasone (1 mg/kg) and normal saline were intratracheally administrated 1 hr prior to whole-body CS-exposure for seven consecutive days to study the key characteristics of ALI. Subsequently, CSE (4%)- and PGD-stimulated RAW 264.7 macrophages were used to evaluate the protective effect of CT‑133.

Key Findings: CT‑133 remarkably attenuated infiltration of inflammatory cells, neutrophils, and macrophages in the BALF, albumin contents, expression of IL‑1β, IL‑6, TNF‑α and KC, lung myeloperoxidase (MPO) activity and lung histopathological alterations caused by CS exposure in mice. Moreover, CT‑133 not only reversed the uncontrolled secretion of IL‑1β, IL-6, TNF‑α and KC from CSE- and PGD-stimulated RAW 264.7 macrophages but also augmented IL-10 production in both in vivo and in vitro studies. Additionally, CT‑133 alleviated in vitro neutrophil migration chemoattracted by PGD.

Significance: Our results provide the first evidence that targeting CRTH2 could be a new potential therapeutic option to treat CS-induced ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.11.039DOI Listing

Publication Analysis

Top Keywords

lung injury
12
crth2 antagonist
8
acute lung
8
cs-induced ali
8
pgd-stimulated raw
8
raw 2647
8
2647 macrophages
8
ct‑133
6
lung
6
ali
5

Similar Publications

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Objective: We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses.

Methods: Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!