Leptin and HPA axis activity in diabetic rats: Effects of adrenergic agonists.

Brain Res

Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States; Neuroendocrine Research Laboratory, Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA 30602, United States. Electronic address:

Published: March 2019

AI Article Synopsis

  • Type I Diabetes (T1D) leads to lower leptin levels and heightened stress response, as seen with increased norepinephrine (NE) in the hypothalamus.
  • In experiments with diabetic rats, leptin treatment reduced corticosterone levels significantly and showed a modest decrease in NE release.
  • The response of the hypothalamus to beta adrenergic agonists is altered in T1D, with only the alpha-2 adrenergic agonist clonidine effectively reversing leptin's impact on NE levels, while both agonists affected the corticosterone response.

Article Abstract

Type I Diabetes (T1D) is associated with reduced leptin levels and increased stress axis activity marked by elevations in norepinephrine (NE) levels in the paraventricular nucleus (PVN) of the hypothalamus. We hypothesized that leptin suppresses stress axis activity in T1D through central and peripheral mechanisms. In the first experiment, adult male Sprague Dawley rats were implanted with a cannula in the PVN and randomly divided into a non-diabetic group treated with vehicle (n = 6) and a diabetic group treated with streptozotocin (n = 13). Food intake and water intake was measured for 14 days. On the last day, a subset of diabetic rats were treated with 500 µg of leptin i.p. Rats were subjected to push-pull perfusion of the PVN and hourly blood sampling for 5 h. In the next experiment, diabetic rats were treated either with an alpha-2 adrenergic agonist, clonidine (CLON), or a beta adrenergic agonist isoproterenol (ISO), to reverse the effects of leptin. Rats were subjected to push pull perfusion and hourly blood sampling. In experiment 1, T1D increased food intake, water intake, NE release in the PVN and circulating CS levels. Leptin treatment decreased NE release modestly but produced a robust reduction in corticosterone (CS) levels. In experiment 2, CLON but not ISO was able to reverse the effect of leptin on NE levels in the PVN, however, both agonists were capable of blocking leptin's effects on circulating CS. These results suggest that in diabetic rats, the sensitivity of the hypothalamus to beta adrenergic agonists is altered, while the adrenals remain sensitive to both alpha and beta adrenergic agonists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2018.11.025DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
axis activity
12
adrenergic agonists
12
beta adrenergic
12
leptin levels
8
stress axis
8
group treated
8
food intake
8
intake water
8
water intake
8

Similar Publications

Our study assessed the phytochemical composition and the effects of Salvia balansae flower aqueous extract (FAE) on sexual dysfunction in diabetic rats. Total phenolic and flavonoid content, quantification of phytochemicals by UHPLC-ESI-MS/MS method and in vitro antioxidant capacity of FAE extract were elucidated. For the in vivo study, diabetes was induced by one intraperitoneal injection of streptozotocin (STZ) (40 mg/kg), and treated diabetic rats were given FAE at 200 mg/kg.

View Article and Find Full Text PDF

Small Intestinal Slow Wave Dysrhythmia and Blunted Postprandial Responses in Diabetic Rats.

Neurogastroenterol Motil

January 2025

Division of Gastroenterology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Background: Gastric dysmotility and gastric slow wave dysrhythmias have been well documented in patients with diabetes. However, little is known on the effect of hyperglycemia on small intestine motility, such as intestinal slow waves, due to limited options in measuring its activity. Moreover, food intake and digestion process have been reported to alter the small intestine motility in normal rats, but their roles in that of diabetic rats remains unknown.

View Article and Find Full Text PDF

Dual-responsive stem cell microspheres modified with BDNF for enhanced neural repair in diabetic erectile dysfunction.

J Control Release

January 2025

Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Institute of Urology, Beijing Municipal Health Commission, Beijing 100050, China. Electronic address:

We previously established an effective method to ameliorate erectile dysfunction (ED) using intracavernous injection (ICI) of mesenchymal stem cell (MSC) microspheres. However, the expression of a key neurotrophic factor, brain-derived neurotrophic factor (BDNF), was low in both MSCs and MSC microspheres, restricting the associated neural repair. Based on the hypoxia and oxidative stress microenvironments within cell spheroids and lesion areas, BDNF-expressing nanocomplexes that are dual-responsive to hypoxia and reactive oxygen species were designed to modify MSCs, achieving high BDNF expression in MSC spheroids.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is the single largest cause of end-stage renal disease (ESRD). Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress have been considered to play a very important role in the progress of diabetic nephropathy (DN). Effective drugs for the treatment of diabetic nephropathy still need to be explored.

View Article and Find Full Text PDF

Purpose: Diabetic retinopathy (DR) is usually diagnosed many years after diabetes onset. Indeed, an early diagnosis of DR remains a notable challenge, and, thus, developing novel approaches for earlier disease detection is of utmost importance. We aim to explore the potential of texture analysis of optical coherence tomography (OCT) retinal images in detecting retinal changes in streptozotocin (STZ)-induced diabetic animals at "silent" disease stages when early retinal molecular and cellular changes that cannot be clinically detectable are already occurring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!