Accumulating evidence suggests that the diabetes-induced cognitive dysfunction can be alleviated when exposed to the enriched environment. However, the impact of the changes of the hippocampal plasticity on the cognitive decline and the possible effect of an enriched environment in prediabetes are still not clearly documented. To explore the effect of enriched environment for prediabetes-induced changes of dendritic structural plasticity in hippocampus pyramidal and cognitive deficits, the praxiology experiments for evaluating of anxiety, spatial learning and memory of prediabetic Wistar were performed, and then the dendritic spine density was assessed in the hippocampal CA1 pyramidal neuronal region. The prediabetic rats demonstrated a hyper-anxiety like behavior and significantly decreased spatial learning abilities and memory deficits. Exposing prediabetic rats to an enriched environment appeared to significantly mitigate the above changes in a time-dependent manner. The enriched environment also restored the density of the hippocampal dendritic spine which was significantly reduced in prediabetic rats. We found that the enriched environment was beneficial in overcoming the prediabetes-induced cognitive disorders and diminished dendritic plasticity of hippocampus pyramidal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/4718 | DOI Listing |
Ecol Evol
January 2025
Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources College of Biology and Environmental Sciences, Jishou University Jishou Hunan China.
Karst caves are a unique environment significantly different from the external environment; adaptation of cave-dwelling animals to the cave environment is often accompanied by shifts in the sensory systems. Aquatic and terrestrial leeches have been found in the karst caves. In this study, we conducted a transcriptome analysis on the cave-dwelling leech .
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Aging is intricately linked to various diseases including cancers, neurodegenerative disorders, and metabolic irregularities. Copper (Cu) overexposure has been found to be linked to many diseases during aging, particularly neurodegenerative diseases. Meanwhile, as an essential element, Cu has been implicated in key processes associated with aging, raising questions about its role in age-related health issues.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
Chlamydomonas reinhardtii, a prominent chassis in synthetic biology, faces limitations in regulating the expression of exogenous genes. A destabilization domain (DD)/Shield-1 system, originally derived from mammals, offers a ligand-dependent control of stability, making it a valuable tool. This system utilises the destabilization domain to induce rapid degradation of target protein unless stabilised by Shield-1, a synthetic ligand.
View Article and Find Full Text PDFInorg Chem
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China.
The electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) toward 2,5-furandicarboxylic acid (FDCA) has been considered a promising approach for the substitution of the energy-consuming and hazardous oxygen evolution reaction and for the valorization of renewable biomass. However, it is limited by the susceptibility of HMF to the oxidative environment and requires efficient electrocatalysts. Herein, a NiMo complex (NiMo-N) is provided as the precatalyst for the HMFOR, exhibiting favorable performances with a current density of 450 mA·cm achieved at an anodic potential of 1.
View Article and Find Full Text PDFBMC Biol
January 2025
Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China.
Background: Human responses and acclimation to the environmental stresses of high altitude and low oxygen are multifaceted and regulated by multiple genes. However, the mechanism of how the body adjusts in a low-oxygen environment is not yet clear.
Results: Hence, we performed RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) to observe the changes of transcriptome and chromatin accessibility in the peripheral blood of eight individuals at 1 h post adaptation in a simulated plateau environment with 3500 m and 4500 m altitude, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!