We present a quantum key distribution system with a 2.5 GHz repetition rate using a three-state time-bin protocol combined with a one-decoy approach. Taking advantage of superconducting single-photon detectors optimized for quantum key distribution and ultralow-loss fiber, we can distribute secret keys at a maximum distance of 421 km and obtain secret key rates of 6.5 bps over 405 km.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.190502DOI Listing

Publication Analysis

Top Keywords

quantum key
12
key distribution
12
secure quantum
4
key
4
distribution 421 km
4
421 km optical
4
optical fiber
4
fiber quantum
4
distribution system
4
system 25 ghz
4

Similar Publications

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

Effect of defects on ballistic transport in a bilayer SnS-based junction with Co intercalated electrodes.

Phys Chem Chem Phys

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

This study theoretically investigates the defect-related electronic structure and transport properties in a device where a semiconductor bilayer SnS (BL-SnS) serves as the central scattering region and bilayer SnS with cobalt atom intercalation (Co-SnS) as the metallic electrodes. The Co-SnS/BL-SnS junction forms an ohmic contact, which is robust to defects. Low contact resistances of 52.

View Article and Find Full Text PDF

Graphene quantum dot-modified CoO/NiCoO yolk-shell polyhedrons as a polysulfide-adsorptive sulfur host for lithium-sulfur batteries.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.

View Article and Find Full Text PDF

Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B9 cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B9 is measured to be 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!