Sulfur and its functional groups are major players in an area of exciting research taking place in modern polymer and materials science, both in academia and industry. In fact, manifold sulfur-based reactions that are both exceptionally versatile as well as tremendously useful have been implemented, and further utilized for the design and preparation of polymeric materials that lead to a plethora of applications ranging from medicine to optics and nanotechnology to separation science. Hence, within this review, an overview of strategies and developments used over the last 5 years to reinforce the importance of the sulfur functional group in modern polymer and materials science is presented. In particular, many important references in the primary literature of sulfur chemistry are referred to, including thiol-ene, thiol-yne, thiol-Michael addition, disulfide cross-linking, and thiol-disulfide exchange, among others, by explaining and illustrating the important principles. Last but not least, the grand aim to underpin the importance of sulfur in modern polymer and materials science is achieved by presenting selected examples in diverse fields and postulating the respective potential for real-world applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201800650 | DOI Listing |
Discov Nano
January 2025
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States.
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany.
The end groups of three- and four-arm star-shaped polylactides (PLA) with trimethylolpropane and pentaerythritol core structures were functionalized with acetic acid. Reaction products with different degrees of functionalization were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Additional gradient elution liquid adsorption chromatography (GELAC) measurements were performed to determine the degree of functionalization.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Herein, we present the development and evaluation of a molecularly imprinted polymer (MIP) sensor for the sensitive and selective detection of -nitrosodimethylamine (NDMA) in aqueous environments. MIP coatings over electrochemically active electrodes enable NDMA detection with a notably low detection limit of 1.16 ppb.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!