Combining chemical flocculation and bacterial co-culture of Cupriavidus taiwanensis and Ureibacillus thermosphaericus to detoxify a hardwood hemicelluloses hydrolysate and enable acetone-butanol-ethanol fermentation leading to butanol.

Biotechnol Prog

Research Laboratory in Applied Metabolic Engineering, Dept. of Chemical Engineering, École Polytechnique de Montréal, J.-A. -Bombardier Pavilion, 2900 Édouard-Montpetit Blvd., Montréal, QC, H3T 1J4, Canada.

Published: March 2019

Butanol, a fuel with better characteristics than ethanol, can be produced via acetone-butanol-ethanol (ABE) fermentation using lignocellulosic biomass as a carbon source. However, many inhibitors present in the hydrolysate limit the yield of the fermentation process. In this work, a detoxification technology combining flocculation and biodetoxification within a bacterial co-culture composed of Ureibacillus thermosphaericus and Cupriavidus taiwanensis is presented for the first time. Co-culture-based strategies to detoxify filtered and unfiltered hydrolysates have been investigated. The best results of detoxification were obtained for a two-step approach combining flocculation to biodetoxification. This sequential process led to a final phenolic compounds concentration of 1.4 g/L, a value close to the minimum inhibitory level observed for flocculated hydrolysate (1.1 g/L). The generated hydrolysate was then fermented with Clostridium acetobutylicum ATCC 824 for 120 h. A final butanol production of 8 g/L was obtained, although the detoxified hydrolysate was diluted to reach 0.3 g/L of phenolics to ensure noninhibitory conditions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2753, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2753DOI Listing

Publication Analysis

Top Keywords

bacterial co-culture
8
cupriavidus taiwanensis
8
ureibacillus thermosphaericus
8
combining flocculation
8
flocculation biodetoxification
8
hydrolysate
5
combining chemical
4
chemical flocculation
4
flocculation bacterial
4
co-culture cupriavidus
4

Similar Publications

Unlabelled: The bacterium is an opportunistic pathogen that can cause lung, skin, wound, joint, urinary tract, and eye infections. While is known to exhibit a robust competitive response toward other bacterial species, this bacterium is frequently identified in polymicrobial infections where multiple species survive. For example, in prosthetic joint infections, can be identified along with other pathogenic bacteria including , , and .

View Article and Find Full Text PDF

BACKGROUND Human metapneumovirus (hMPV), classified in the Pneumoviridae family, is primarily known for causing lower respiratory tract infections in children, the elderly, and immunocompromised individuals. However, rare instances have shown that hMPV can also affect other systems, such as the cardiovascular system, leading to conditions like myocarditis. CASE REPORT We describe a 68-year-old man with a medical history of diabetes, hypertension, and liver cirrhosis who presented to the Emergency Department (ED) exhibiting symptoms of fever, cough, and dyspnea.

View Article and Find Full Text PDF

Aseptic process simulations (APS) are traditionally performed using Tryptic Soy Broth (TSB) as a surrogate for finished product to qualify aseptic manufacturing operations. In this study, the supernatant from cell processing media was examined for bacterial and fungal growth viability to determine equivalency with TSB. With the use of cell processing media in Cell and Gene Therapy (CGT) manufacturing, can qualifying the supernatant collected from the process eliminate the need for an APS run?Supernatant was collected from cell processing media and incubated at same incubations conditions required for the APS post sterility check (Test A - 7d 20-25°C/7d 30-35°C) and at use conditions (Test B - 14 d at 35°C/5%CO/5%O2).

View Article and Find Full Text PDF

Introduction: The Sanxingdui site (Sichuan, China) is the typical representative of the ancient Shu culture, which lasts from the late Neolithic to early Western Zhou. The sacrificial pits are located in the core region of Sanxingdui site, and numerous artifacts are unearthed including ivory, seashells, bronzes, pottery, jade, stone, gold, bone, and horn products. The function of the pits and buried artifacts has always been the focus, but the microbiome around artifacts attracts less attention.

View Article and Find Full Text PDF

Plant-produced sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is one of the most abundant sulfur-containing compounds in nature and its bacterial degradation plays an important role in the biogeochemical sulfur and carbon cycles and in all habitats where SQ is produced and degraded, particularly in gut microbiomes. Here, we report the enrichment and characterization of a strictly anaerobic SQ-degrading bacterial consortium that produces the C-sulfonate isethionate (ISE) as the major product but also the C-sulfonate 2,3-dihydroxypropanesulfonate (DHPS), with concomitant production of acetate and hydrogen (H). In the second step, the ISE was degraded completely to hydrogen sulfide (HS) when an additional electron donor (external H) was supplied to the consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!