Morphotropic Phase Boundary of HfZr O Thin Films for Dynamic Random Access Memories.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, College of Engineering , Seoul National University, Seoul 151-744 , Republic of Korea.

Published: December 2018

The utilization of the morphotropic phase boundary (MPB) between the newly found ferroelectric orthorhombic phase and the tetragonal phase in an HfO-ZrO solid solution is suggested for a high-capacitance dielectric capacitor. Being different from other high- k dielectrics, where the k value decreases with decreasing film thickness, these films (Hf/Zr ratio = 6:4, 5:5, 3:7) showed increasing k values with decreasing film thicknesses in the ∼5-20 nm range. Among them, HfZrO and HfZrO films showed 47 and 43 peak k values at 6.5 and 9.2 nm thicknesses, respectively, suggesting the involvement of the MPB phenomenon. For the systematic understanding of this peculiar phenomenon, the phase evolution of the HfO-ZrO solid solution is presented based on experimental observations. The detailed electrical tests of the films with different compositions and thicknesses demonstrated that the characteristic feature of this material system is consistent with the involvement of the MPB depending on the composition and thickness. Through the optimization of the annealing process for crystallization, a 0.62 nm minimum equivalent oxide thickness was reported for the 6.5 nm thick HfZrO film, which is highly promising for the future dynamic random access memories. This work provided a breakthrough method for overcoming the fundamental limitation of a decreasing k value with a decreasing film thickness of other high- k dielectrics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b15576DOI Listing

Publication Analysis

Top Keywords

decreasing film
12
morphotropic phase
8
phase boundary
8
dynamic random
8
random access
8
access memories
8
hfo-zro solid
8
solid solution
8
high- dielectrics
8
film thickness
8

Similar Publications

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Photostimulus-responsive fluorescent materials are promising for anticounterfeiting and UV printing due to rapid response and simple preparation. In this paper, we propose a novel strategy to prepare photostimulus-responsive materials SP@HOF-olefin by integrating the photochromic molecule spiropyran (SP) with postsynthetic modified hydrogen-bonded organic frameworks (HOF-olefin). Compared to SP@HOF, the composites SP@HOF-olefin exhibit enhanced photochromic properties, such as a fast response speed, pronounced color contrast, and exceptional fatigue resistance.

View Article and Find Full Text PDF

Green preparation of highly transparent nano-NH-UiO(Zr)-66/cellulose composite films with high-strength, superior flame retardant and UV to high-energy blue light shielding performance.

Int J Biol Macromol

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.

View Article and Find Full Text PDF

This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!