Success of enzymes as drugs requires that they persist within target tissues over therapeutically effective time frames. Here we report a general strategy to anchor enzymes at injection sites via fusion to galectin-3 (G3), a carbohydrate-binding protein. Fusing G3 to luciferase extended bioluminescence in subcutaneous tissue to ~7 days, whereas unmodified luciferase was undetectable within hours. Engineering G3-luciferase fusions to self-assemble into a trimeric architecture extended bioluminescence in subcutaneous tissue to 14 days, and intramuscularly to 3 days. The longer local half-life of the trimeric assembly was likely due to its higher carbohydrate-binding affinity compared to the monomeric fusion. G3 fusions and trimeric assemblies lacked extracellular signaling activity of wild-type G3 and did not accumulate in blood after subcutaneous injection, suggesting low potential for deleterious off-site effects. G3-mediated anchoring to common tissue glycans is expected to be broadly applicable for improving local pharmacokinetics of various existing and emerging enzyme drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250738PMC
http://dx.doi.org/10.1038/s41467-018-07129-6DOI Listing

Publication Analysis

Top Keywords

extended bioluminescence
8
bioluminescence subcutaneous
8
subcutaneous tissue
8
tissue days
8
locally anchoring
4
anchoring enzymes
4
enzymes tissues
4
tissues extracellular
4
extracellular glycan
4
glycan recognition
4

Similar Publications

Rapid progressing non-small cell lung adenocarcinoma (NSCLC) decreases treatment success. Cannabinoids emerge as drug candidates for NSCLC due to their anti-tumoral capabilities. We previously reported the controlled release of Arachidonylcyclopropylamide (ACPA) selectively targeting cannabinoid 1 (CB1) receptor in NSCLC cells in vitro.

View Article and Find Full Text PDF

Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen.

Mol Ther

December 2024

Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada. Electronic address:

Self-amplifying RNA (saRNA) vectors are a next-generation RNA technology that extends the expression of heterologous genes. Clinical trials have shown the dose-sparing capacity of saRNA vectors in a vaccine context compared with conventional messenger RNA. However, saRNA vectors have historically been based on a limited number of alphaviruses, and only the Venezuelan equine encephalitis virus-based saRNA vaccines have been used clinically.

View Article and Find Full Text PDF

Inhibitors of tubulin polymerization represent a promising therapeutic approach for the treatment of solid tumors. Molecules that bind to the colchicine site are of interest as they can function with a dual mechanism of action as both potent antiproliferative agents and tumor-selective vascular disrupting agents (VDAs). One such example is a 2-aryl-3-aroyl-indole molecule (OXi8006) from our laboratory that demonstrates potent inhibition of tubulin polymerization and strong antiproliferative activity (cytotoxicity) against a variety of human cancer cell lines.

View Article and Find Full Text PDF

Microencapsulation of and within a Novel Polysaccharide-Based Core-Shell Formulation: Improving Probiotic Viability and Mucoadhesion.

ACS Biomater Sci Eng

November 2024

School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.

Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC.

View Article and Find Full Text PDF

Self-Illuminating Copper-Luminol Coordination Polymers for Bioluminescence Imaging of Oxidative Damage.

Anal Chem

October 2024

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.

Timely detection of reactive oxygen species (ROS) accumulated during inflammation is essential for an early disease diagnosis. Compared to fluorescence probes with limited sensitivity and accuracy, chemiluminescence (CL) imaging offers the potential for highly sensitive molecular visualization of ROS by minimizing background interferences. However, the development of bright and easily manufacturable CL probes for ROS imaging remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!