Evidence for 'critical slowing down' in seagrass: a stress gradient experiment at the southern limit of its range.

Sci Rep

Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.

Published: November 2018

The theory of critical slowing down, i.e. the increasing recovery times of complex systems close to tipping points, has been proposed as an early warning signal for collapse. Empirical evidence for the reality of such warning signals is still rare in ecology. We studied this on Zostera noltii intertidal seagrass meadows at their southern range limit, the Banc d'Arguin, Mauritania. We analyse the environmental covariates of recovery rates using structural equation modelling (SEM), based on an experiment in which we assessed whether recovery after disturbances (i.e. seagrass & infauna removal) depends on stress intensity (increasing with elevation) and disturbance patch size (1 m vs. 9 m). The SEM analyses revealed that higher biofilm density and sediment accretion best explained seagrass recovery rates. Experimental disturbances were followed by slow rates of recovery, regrowth occurring mainly in the coolest months of the year. Macrofauna recolonisation lagged behind seagrass recovery. Overall, the recovery rate was six times slower in the high intertidal zone than in the low zone. The large disturbances in the low zone recovered faster than the small ones in the high zone. This provides empirical evidence for critical slowing down with increasing desiccation stress in an intertidal seagrass system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250700PMC
http://dx.doi.org/10.1038/s41598-018-34977-5DOI Listing

Publication Analysis

Top Keywords

critical slowing
8
slowing increasing
8
empirical evidence
8
intertidal seagrass
8
recovery rates
8
seagrass recovery
8
low zone
8
recovery
7
seagrass
6
evidence 'critical
4

Similar Publications

The study investigated the impact of low-dose sodium nitrite on yak meat color and mitochondrial functional characteristics during the wet curing. The results showed that sodium nitrite significantly enhanced the redness ( value) of yak meat by increasing the activities of mitochondrial complexes I, II, III and IV, which are critical for electron transport and aerobic respiration. Additionally, sodium nitrite reduced mitochondrial swelling and membrane permeability, and slowed the production of lipid oxidation products, indicating protective effects against mitochondrial damage and preserving mitochondrial integrity.

View Article and Find Full Text PDF

CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.

View Article and Find Full Text PDF

FPGA acceleration of tensor network computing for quantum spin models.

Rev Sci Instrum

January 2025

Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

Increasing the degree of freedom for quantum entanglement within tensor networks can enhance the depiction of the essence in many-body systems. However, this enhancement comes with a significant increase in computational complexity and critical slowing down, which drastically increases time consumption. This work converts a quantum tensor network algorithm into a classical circuit on the Field Programmable Gate Arrays (FPGAs) and arranges the computing unit with a dense parallel design, efficiently optimizing the time consumption.

View Article and Find Full Text PDF

Background: Patient engagement (PE) in clinical trials has gained importance yet remains uncommon, particularly in patients with mild cognitive impairment (MCI), a critical precursor to Alzheimer's disease (AD). Cannabidiol (CBD) shows potential in slowing MCI progression due to its neuroprotective and anti-inflammatory properties. In CBD research, PE is underutilized too.

View Article and Find Full Text PDF

RNA folding kinetics control riboswitch sensitivity in vivo.

Nat Commun

January 2025

Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.

Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!