This study was conducted to evaluate the presence of air trapping in patients with idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases (ILDs) (non-IPF), showing the radiological pattern of usual interstitial pneumonia (UIP). Retrospectively, we included 69 consecutive patients showing the typical UIP pattern on computed tomography (CT), and 15 final diagnosis of IPF with CT pattern "inconsistent with UIP" due to extensive air trapping. Air trapping at CT was assessed qualitatively by visual analysis and quantitatively by automated-software. In the quantitative analysis, significant air trapping was defined as >6% of voxels with attenuation between -950 to -856 HU on expiratory CT (expiratory air trapping index [ATIexp]) or an expiratory to inspiratory (E/I) ratio of mean lung density >0.87. The sample comprised 51 (60.7%) cases of IPF and 33 (39.3%) cases of non-IPF ILD. Most patients did not have air trapping (E/I ratio ≤0.87, n = 53, [63.1%]; ATIexp ≤6%, n = 45, [53.6%]). Air trapping in the upper lobes was the only variable distinguishing IPF from non-IPF ILD (prevalence, 3.9% vs 33.3%, p < 0.001). In conclusion, air trapping is common in patients with ILDs showing a UIP pattern on CT, as determined by qualitative and quantitative evaluation, and should not be considered to be inconsistent with UIP. On subjective visual assessment, air trapping in the upper lobes was associated with a non-IPF diagnoses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250722PMC
http://dx.doi.org/10.1038/s41598-018-35387-3DOI Listing

Publication Analysis

Top Keywords

air trapping
32
air
8
usual interstitial
8
interstitial pneumonia
8
e/i ratio
8
non-ipf ild
8
trapping
7
trapping usual
4
pattern
4
pneumonia pattern
4

Similar Publications

Stable Air Plastron Prolongs Biofluid Repellency of Submerged Superhydrophobic Surfaces.

Langmuir

January 2025

School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.

Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.

View Article and Find Full Text PDF

The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.

View Article and Find Full Text PDF

Enhancing Flexible Perovskite Photovoltaic Cells and Modules Through Light-Trapping and Light-Shifting Strategies.

Small Methods

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong, 510632, China.

Flexible perovskite photovoltaic devices are typically constructed on flexible polyethylene naphthalate (PEN) substrates, which exhibit near-ultraviolet absorption and high visible-light reflection, leading to significant optical losses. To address this issue, a reusable optical-management sticker tailored for flexible substrates has been proposed in this work. The sticker incorporates a light-shifting material that converts near-ultraviolet light into visible light, enabling photoelectric conversion of near-ultraviolet light.

View Article and Find Full Text PDF

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!