Aims: of this investigation were to quantify copper (Cu), iron (Fe) and zinc (Zn) along with sulphur (S) and phosphorus (P) in hepatocytes and connective tissue in liver section from patients with Wilson´s disease (WD) by micro Synchrotron X-ray fluorescence (μ-SRXRF). Secondly to establish two-dimensional μ-SRXRF element mappings for comparison with histologically prepared slices, and thirdly to assess whether elemental distributions are associated.
Methods: Archival liver tissues from twelve patients with end-stage cirrhosis or fulminant WD were investigated. Mutations in ATP7B have been classified before. For control seven archived normal liver tissues were investigated. μ-SRXRF measurements were performed at the DORIS III storage ring at HASYLAB/DESY (Hamburg, Germany). Two-dimensional element distribution were compared with histologically prepared slices about 20-30 μm apart from those investigated by μ-SRXRF.
Results: Elementary copper (Cu) could be demonstrated in all investigated liver sections simultaneously with Fe, Zn, P and S. In WD mean Cu was 20 fold increased in hepatocytes and threefold in fibrotic areas in comparison with controls. In regeneration nodules Cu was strikingly inhomogeneous distributed. Cu concentrations measured by μ-SRXRF correlated with those measured by atom absorption spectroscopy. Strong associations in their regional distribution existed between Zn and Cu or Fe and S. Moreover, differences in Cu/S were found between hepatocytes and fibrotic areas. An increase of Fe could only be documented in hepatocytes compared to fibrotic areas. With a beam size of 15 x 15 μm two-dimensional distributions of these elements are morphologically comparable with histological section with a magnification of about 25x optic microscope.
Conclusions: μ-SRXRF investigations are a valuable tool for quantifying element concentrations in biological tissues and further provide 2-dimensional information of element distribution and elemental association in a biological tissues, thus speeding up basic knowledge in a synopsis with biological and clinical data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2018.09.007 | DOI Listing |
Expert Rev Respir Med
January 2025
Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
Introduction: Amyloidosis, a polymeric deposition disease classified according to protein subtype, may have varied pulmonary manifestations. Its anatomic-radiologic phenotypes include nodular, cystic, alveolar-septal, and tracheobronchial forms. Clinical presentation may range from asymptomatic parenchymal nodules to respiratory failure from diffuse parenchymal infiltration or diaphragmatic deposition.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Otolaryngology, Nationwide Children's Hospital, Columbus, United States of America.
Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.
Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
Purpose: Cardiac fibrosis, a key contributor to ventricular pathologic remodeling and heart failure, currently lacks effective therapeutic approaches.
Patients And Methods: Small extracellular vesicles from young healthy human plasma (Young-sEVs) were characterized via protein marker, transmission electron microscopy, and nanoparticle tracking analysis, then applied in cellular models and mouse models of cardiac fibrosis. Western blotting and qRT-PCR were used to identify protective signaling pathways in cardiac fibroblasts (CFs).
Commun Med (Lond)
January 2025
Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
Background: Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease that may develop after lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT imaging. Deep neural networks (DNNs) have not previously been used for BOS detection. This study aims to train a DNN to detect BOS in CT scans using an approach tailored for low-data scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!