A cupin domain is involved in α-amylase inhibitory activity.

Plant Sci

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Desert Research Institute in the Arid Region, Xinjiang Agricultural University, Urumqi 830052, China; Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China. Electronic address:

Published: December 2018

Proteinaceous α-amylase inhibitors have specialized activities that make some strong inhibition of α-amylases. New α-amylase inhibitors continue to be discovered so far. A proteinaceous α-amylase inhibitor CL-AI was isolated and identified from chickpea seeds. CL-AI, encoded by Q9SMJ4, was a storage legumin precursor containing one α-chain and one β-chain, and each chain possessed a same conserved cupin domain. Amino acid mutation and deficiency of cupin domain would lead to loss of α-amylase inhibitory activity, indicating that it was essential for inhibitory activity. CL-AI(α + β) in its single stranded state in vivo had inhibitory activity. After it was processed into one α-chain and one β-chain, the two chains were connected to each other via disulfide bond, which would cover the cupin domains and lead to the loss of inhibitory activity. The CL-AI(α + β), α-chain and β-chain could inhibit various α-amylases and delay the seed germination of wheat, rice and maize as well as the growth and development of potato beetle larva. Two cupin proteins, Glycinin G1 in soybean and Glutelinin in rice were also found to have inhibitory activity. Our results indicated that the cupin domain is involved in α-amylase inhibitory activity and the proteins with a cupin domain may be a new kind of proteinaceous α-amylase inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2018.10.001DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
28
cupin domain
20
α-amylase inhibitory
12
proteinaceous α-amylase
12
α-chain β-chain
12
domain involved
8
involved α-amylase
8
α-amylase inhibitors
8
α-amylase inhibitor
8
lead loss
8

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.

Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Loma Linda University Health, Loma Linda, CA, USA.

Background: Only about 50% of the variance in cognitive decline occurring during Alzheimer's pathogenesis is attributable to standard AD biomarkers (cerebrocortical Aβ, pathological tau, and atrophy) (Tosun et al., Alzheimer's Dement. 18: 1370, 2022).

View Article and Find Full Text PDF

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!