Frequent exposure of plants to solar ultraviolet radiation (UV) results in damaged DNA. One mechanism of DNA repair is the light independent pathway Global Genomic Nucleotide Excision Repair (GG-NER), which repairs UV damaged DNA throughout the genome. In mammals, GG-NER DNA damage recognition is performed by the Damaged DNA Binding protein 1 and 2 (DDB1/2) complex which recruits the Xeroderma Pigmentosa group C (XPC) / RAD23D complex. In the yeast Saccharomyces cerevisiae, distinct proteins, Radiation sensitive 7 and 16 (Rad7p and Rad16p), recognize the damaged DNA strand and then recruit the XPC homologue, Rad4p, and Rad23p. The remainder of the proteins involved GG-NER are well conserved. DDB1, DDB2, XPC/RAD4, and RAD23 homologues have been described in the model plant Arabidopsis thaliana. In this study we characterize three Arabidopsis RAD7 homologues, RAD7a, RAD7b, and RAD7c. Loss of function alleles of each of the three RAD7 homologues result in increased UV sensitivity. In addition, RAD7b and RAD7c overexpression lines exhibited increased UV tolerance. Thus RAD7 homologues contribute to UV tolerance in plants as well as in yeast. This is the first time any system has been shown to utilize both the DDB1/2 and RAD7/16 damage recognition complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2018.09.017 | DOI Listing |
Genes (Basel)
July 2023
Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
In plants, prolonged exposure to ultraviolet (UV) radiation causes harmful DNA lesions. Nucleotide excision repair (NER) is an important DNA repair mechanism that operates via two pathways: transcription coupled repair (TC-NER) and global genomic repair (GG-NER). In plants and mammals, TC-NER is initiated by the Cockayne Syndrome A and B (CSA/CSB) complex, whereas GG-NER is initiated by the Damaged DNA Binding protein 1/2 (DDB1/2) complex.
View Article and Find Full Text PDFPlant Sci
December 2018
Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada. Electronic address:
Frequent exposure of plants to solar ultraviolet radiation (UV) results in damaged DNA. One mechanism of DNA repair is the light independent pathway Global Genomic Nucleotide Excision Repair (GG-NER), which repairs UV damaged DNA throughout the genome. In mammals, GG-NER DNA damage recognition is performed by the Damaged DNA Binding protein 1 and 2 (DDB1/2) complex which recruits the Xeroderma Pigmentosa group C (XPC) / RAD23D complex.
View Article and Find Full Text PDFMol Cell Biol
July 2004
Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908-0733, USA.
Nucleotide excision repair factor 4 (NEF4) is required for repair of nontranscribed DNA in Saccharomyces cerevisiae. Rad7 and the Snf2/Swi2-related ATPase Rad16 are NEF4 subunits. We report previously unrecognized similarity between Rad7 and F-box proteins.
View Article and Find Full Text PDFMol Microbiol
June 2004
Program in Microbiology and Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, NJ, USA.
Nucleotide excision repair (NER) in eukaryotes is a pathway conserved from yeast to humans that removes many bulky chemical adducts and UV-induced photoproducts from DNA in a relatively error-free manner. In addition to the recognition and excision of DNA damage throughout the genome (GGR), there exists a mechanism, transcription-coupled nucleotide excision repair (TCR), for recognizing some types of DNA damage in the transcribed strand of genes in Escherichia coli, yeast and mammalian cells. An obstacle in the repair of the transcribed strand of active genes is the RNA polymerase complex stalled at sites of DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!