Genomic organization and role of SPI-13 in nutritional fitness of Salmonella.

Int J Med Microbiol

Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA. Electronic address:

Published: December 2018

Salmonella pathogenicity island 13 (SPI-13) contributes to the virulence of Salmonella. The majority of the SPI-13 genes encode proteins putatively involved in bacterial metabolism, however, their functions largely remain uncharacterized. It is currently unknown if SPI-13 contributes to metabolic fitness of Salmonella and, if so, what are the metabolic substrates for the protein encoded by genes within SPI-13. We employed Phenotype Microarray (Biolog, USA) to compare the metabolic properties of SPI-13 deficient mutant (ΔSPI-13) and the WT parent strain of non-typhoidal Salmonella enterica sub sp. enterica serovar Enteritidis (S. Enteritidis). The results of Phenotype Microarray revealed that SPI-13 is required for efficient utilization of two micronutrients, namely, d-glucuronic acid (DGA) and tyramine (TYR), as sole sources of carbon and/or nitrogen. By systematic deletion of the individual gene(s), we identified specific genes within SPI-13 that are required for efficient utilization of DGA (SEN2977-80) and TYR (SEN2967 and SEN2971-72) as sole nutrient sources. The results show that SPI-13 mediated DGA and TYR metabolic pathways afford nutritional fitness to S. Enteritidis. Comparative genomics analysis of the SPI-13 locus from 247 Salmonella strains belonging to 57 different serovars revealed that SPI-13 genes specifically involved in the metabolism of DGA and TYR are highly conserved in Salmonella enterica. Because DGA and TYR are naturally present as metabolic byproducts in the gastrointestinal tract and other host tissues, we propose a metabolic model that shows that the role of SPI-13 mediated DGA and TYR metabolism in the nutritional fitness of Salmonella is likely linked to nutritional virulence of this pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmm.2018.10.004DOI Listing

Publication Analysis

Top Keywords

dga tyr
16
spi-13
12
nutritional fitness
12
fitness salmonella
12
role spi-13
8
salmonella
8
spi-13 contributes
8
spi-13 genes
8
genes spi-13
8
phenotype microarray
8

Similar Publications

Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant in A Serotype-Independent Manner.

Pathogens

April 2021

Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.

Non-typhoidal ingeniously scavenges energy for growth from tyramine (TYR) and d-glucuronic acid (DGA), both of which occur in the host as the metabolic byproducts of the gut microbial metabolism. A critical first step in energy scavenging from TYR and DGA in involves TYR-oxidation via TYR-oxidoreductase and production of free-DGA via β-glucuronidase (GUS)-mediated hydrolysis of d-glucuronides (conjugated form of DGA), respectively. Here, we report that utilizes TYR and DGA as sole sources of energy in a serotype-independent manner.

View Article and Find Full Text PDF

Global transcriptional profiling of tyramine and d-glucuronic acid catabolism in Salmonella.

Int J Med Microbiol

December 2020

Department of Veterinary Microbiology and Pathology, United States; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, United States. Electronic address:

Salmonella has evolved various metabolic pathways to scavenge energy from the metabolic byproducts of the host gut microbiota, however, the precise metabolic byproducts and pathways utilized by Salmonella remain elusive. Previously we reported that Salmonella can proliferate by deriving energy from two metabolites that naturally occur in the host as gut microbial metabolic byproducts, namely, tyramine (TYR, an aromatic amine) and d-glucuronic acid (DGA, a hexuronic acid). Salmonella Pathogenicity Island 13 (SPI-13) plays a critical role in the ability of Salmonella to derive energy from TYR and DGA, however the catabolic pathways of these two micronutrients in Salmonella are poorly defined.

View Article and Find Full Text PDF

Genomic organization and role of SPI-13 in nutritional fitness of Salmonella.

Int J Med Microbiol

December 2018

Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA. Electronic address:

Salmonella pathogenicity island 13 (SPI-13) contributes to the virulence of Salmonella. The majority of the SPI-13 genes encode proteins putatively involved in bacterial metabolism, however, their functions largely remain uncharacterized. It is currently unknown if SPI-13 contributes to metabolic fitness of Salmonella and, if so, what are the metabolic substrates for the protein encoded by genes within SPI-13.

View Article and Find Full Text PDF

Receptor targeting ligands for imaging and/or therapy of cancer are limited by heterogeneity of receptor expression by tumor cells, both inter-patient and intra-patient. It is often more important for imaging agents to identify local and distant spread of disease than it is to identify a specific receptor presence. Two natural hormone peptide receptors, GRPR and Y1, are specifically interesting because expression of GRPR, Y1 or both is up-regulated in most breast cancers.

View Article and Find Full Text PDF

We describe a genetic analysis of the vitamin B12 receptor of Escherichia coli. Through the use of informational suppression, we have been able to generate a family of receptor variants, each identical save for a single, known substitution (Ser, Gln, Lys, Tyr, Leu, Cys, Phe) at a known site. We have studied 22 different mutants, 14 in detail, distributed throughout the length of the btuB gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!