Objectives: The long-term use of intrauterine devices (IUDs) may lead to biofilm formation on the surface. The aim of this study was to perform the culture- and PCR-based detection of bacteria/fungi from the biofilm of the removed IUDs with different time periods in place.
Methods: For a 2-year period, 100 IUD users were involved in the study. In the majority of the cases, IUDs were removed because of the patients' complaints. Beside the aerobic and anaerobic culture, species-specific PCR was carried out to detect Chlamydia trachomatis Neisseria gonorrhoeae and the "signalling" bacteria of bacterial vaginosis (BV) in the biofilm removed by vortexing.
Results: Sixty-eight percent of IUDs were used for more than 5 years, 32% were removed after 10 years in place. In 28% of the IUDs ≥ 3 different anaerobic species typically found in BV with or without other aerobic bacteria were found by culture method. Streptococcus agalactiae (14%) and Actinomyces spp. (18%) were also isolated frequently. The PCR detection of Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp. and Ureaplasma urealyticum were 62%, 32%, 23% and 16%, respectively. Seventy-six percent of the IUDs were PCR positive at least for one "signalling" bacterium of BV. C. trachomatis was detected by PCR only in one IUD together with other aerobic and anaerobic bacteria, while the presence of N. gonorrhoeae could not be confirmed from the biofilm of these removed devices.
Conclusion: Sexually transmitted infections (STI)-related bacteria-except for one patient-were not detected on the IUDs removed due to different reasons including clinical symptoms of infection. Presence of any BV "signaling" anaerobic bacteria were detected in a much higher number in the biofilm of the removed IUDs by PCR-based method compared to use culture method (76 versus 28 samples). Different aerobic and anaerobic bacteria colonized an equal number of IUDs, independent of the time-period in place, which may be relevant, if the IUD is removed due to planned pregnancy or due to a fear from upper genital tract infection caused by anaerobic bacteria including Actinomyces spp.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249738 | PMC |
http://dx.doi.org/10.1186/s12941-018-0293-6 | DOI Listing |
Front Microbiol
January 2025
Bluepha Co., Ltd., Shanghai, China.
Microplastics (MP) contamination in food and water poses significant health risks. While microbes that form biofilm show potential for removing MP from the environment, no methods currently exist to eliminate these non-degradable MP from the human body. In this study, we propose using probiotics to adsorb and remove ingested MP within the gut.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
In this work, three iridium(iii) tetrazolato complexes have been used in antibacterial, biofilm removal and for other bioactivities for the first time. Notably, these iridium(iii) tetrazolato complexes with high antibacterial, especially, Ir-CFTAZ showed the best antimicrobial activity and the most effective hemolytic performance, which may pave the way to explore the value of the complexes for clinical applications in the future.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands.
Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.
Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation procedure for removing fouling deposits. Traditional CIP includes a series of chemical cleaning cycles, including alkaline, acid, and sanitizer. However, these chemicals are hazardous to the environment and employees.
View Article and Find Full Text PDFFolia Microbiol (Praha)
January 2025
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!