Detecting the undetectable: The role of trace surfactant in the Jones-Ray effect.

J Chem Phys

Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA.

Published: November 2018

AI Article Synopsis

  • The surface tension of dilute salt water is essential for understanding various processes in water, with small ions repelled from the air-water surface increasing surface tension according to the Gibbs adsorption isotherm.
  • At low salt concentrations, the Jones-Ray effect shows a decrease in surface tension, highlighting the need to determine its underlying mechanism for predicting ion distribution near surfaces.
  • Experimental measurements and numerical solutions indicate that very low surfactant concentrations trigger the Jones-Ray effect, raising concerns over water purity standards and the significance of ion interactions in driving surface phenomena.

Article Abstract

The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration, the surface tension decreases. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we use both experimental surface tension measurements and numerical solution of the Poisson-Boltzmann equation to demonstrate that very low concentrations of surfactant in water create a Jones-Ray effect. We also demonstrate that the low concentrations of the surfactant necessary to create the Jones-Ray effect are too small to be detectable by surface sensitive spectroscopic measurements. The effect of surface curvature on this behavior is also examined, and the implications for unexplained bubble phenomena are discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5050421DOI Listing

Publication Analysis

Top Keywords

surface tension
16
demonstrate low
8
low concentrations
8
concentrations surfactant
8
create jones-ray
8
surface
7
jones-ray
5
detecting undetectable
4
undetectable role
4
role trace
4

Similar Publications

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Large-scale synthesis of polydimethylsiloxane as vitreous replacement applications.

Des Monomers Polym

January 2025

Department of Physics Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.

Polydimethylsiloxane (PDMS) is a polymer that can be used as a vitreous substitute. To fulfill the need for PDMS on a large scale, synthesis of PDMS in a large number is also needed. Therefore, intensive research is needed to produce PDMS in large quantities.

View Article and Find Full Text PDF

Liquid-Vapor Phase Equilibrium in Molten Aluminum Chloride (AlCl) Enabled by Machine Learning Interatomic Potentials.

J Phys Chem B

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl molten salt across varied thermodynamic conditions ( = 473-613 K and = 2.

View Article and Find Full Text PDF

Objectives: The aim of this study was to ivnestigate the effect of simulated gastrointestinal viscosity, surface tension, and pH on the dissolution rate of two commercial candesartan cilexetil (CC) products.

Materials And Methods: dissolution of two commercial CC products and immediate release of 16 mg of CC were applied under two conditions: (1) the requirements of the United States Pharmacopeia (USP) and (2) conditions physiologically related to the gastrointestinal tract mimicking viscous food intake. The solubility of CC in different simulation fluids was also measured.

View Article and Find Full Text PDF

Cartilaginous microtissues exhibit extreme resilience under compression with size-dependent mechanical properties.

Biomaterials

January 2025

Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research, KU Leuven, ON1 Herestraat 49, PB 813, 3000, Leuven, Belgium. Electronic address:

Self-assembled cartilaginous microtissues provide a promising means of repairing challenging skeletal defects and connective tissues. However, despite their considerable promise in tissue engineering, the mechanical response of these engineered microtissues is not well understood. Here we examine the mechanical and viscoelastic response of progenitor cell aggregates formed from human primary periosteal cells and the resulting cartilaginous microtissues under large deformations as might be encountered in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!