Inspired by polyvalency and its prevalence in nature, we developed an efficient synthetic route for accessing a large variety of multivalent and dual-cavity baskets from inexpensive and abundant starting materials. First, the cycloaddition of vinyl acetate to anthracene was optimized to, upon hydrolysis, give dibenzobarrelene derivative 6, which after five functional group transformations and then cyclotrimerization gave heptiptycene dodecaester 4 in an overall 17 % yield. Following that, compound 4 was converted into D symmetric 1, composed of two fused cavitands each holding three terminal alkynes at the rim for conjugation to functional molecules using the highly efficient CuAAC reaction. To survey the reactivity of hexavalent 1, we "clicked" 2-acetamido-2-deoxy-β-d-glucopyranosyl azide 3,4,6-triacetate (carbohydrate), methoxypolyethylene glycol azide (PEG, M =2000; polymer) and benzyl azide (aromatic) to obtain hexavalent conjugates 12-14 in 50-79 % yields. In summary, dual-cavity 1 is an accessible, structurally-unique and hexavalent host that can be "clicked" to a variety of functional molecules for (a) combinatorial lead identification of drugs, (b) preparation of hierarchical soft materials and (c) design of selective chemosensors, scavengers, or supramolecular catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201805246 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology, Southeast University Zhongda Hospital, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China (M.Y., J.J.). Electronic address:
Rationale And Objectives: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.
Materials And Methods: Data of 115 patients with STTs of extremities and trunk were collected from our hospital as the training set, and data of other 70 patients were collected from another center as the external validation set. Outlined Regions of interest included the intratumor and the peritumor region extending outward by 5 mm, then the corresponding radiomics features were extracted respectively.
Sci Data
January 2025
Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54, Košice, Slovak Republic.
The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:
The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China. Electronic address:
In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME).
View Article and Find Full Text PDFSci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!