Bio-inspired hollow PDMS sponge for enhanced oil-water separation.

J Hazard Mater

Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, South Korea. Electronic address:

Published: March 2019

Oil spills from disasters such as the sinking of ships and the discharge of oily wastes cause serious environmental problems. Polydimethylsiloxane(PDMS) sponges are valuable tools for isolating spilled oil. Here, we propose new PDMS sponges with bio-inspired design and enhanced absorption capacities. 3D printing was used to produce templates having negative designs, and after being filled with PDMS, the templates were selectively dissolved. Through this, PDMS sponges with well-interconnected and controlled porosities were produced within 10% error. The wettability of sponges with various pore sizes and line widths was investigated. The surfaces were found to be highly hydrophobic, with water contact angles of 100-143°, and oleophilic, with oil contact angles of ∼0°. The sponge fabricated with line width of 200 μm and pore size of 400 μm showed the highest hydrophobicity and oleophilicity. These parameters were used to produce the surfaces of hollow sponges having bio-inspired design that mimics the water absorption and storage functions of cactus. Repeated oil-water separation testing was conducted, and the absorption capacities were compared with those of non-hollow and conventional sponges. The new design showed absorption capacity up to 3.7 times that of the sponges. The bio-inspired PDMS sponge provides a significant advance in oil-water separation ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.10.078DOI Listing

Publication Analysis

Top Keywords

oil-water separation
12
sponges bio-inspired
12
pdms sponge
8
pdms sponges
8
bio-inspired design
8
absorption capacities
8
contact angles
8
sponges
7
pdms
5
bio-inspired
4

Similar Publications

This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.

View Article and Find Full Text PDF

Solvation enabled highly efficient gradient assembly creates robust metal-phenolic coatings.

J Colloid Interface Sci

December 2024

The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China; School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China. Electronic address:

Metal-phenolic networks (MPNs) are supramolecular materials that have received interest in various fields, including biomedicine, separations, environmental remediation, and catalysis. Despite recent advances, the construction of thick and robust MPN coatings that withstand harsh conditions (e.g.

View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications.

View Article and Find Full Text PDF

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!