Here, we investigated the effect of preparation temperature and alginate-coating on L929 fibroblast behavior on lyophilized microporous PLLA/PLGA (95:5, w/w) scaffolds. The lower freezing temperature used during lyophilization (-80 °C) resulted in smaller pores (around 50 μm) and higher compressive modulus (1500 kPa) than those prepared at the higher temperature (-20 °C) (pore size: 120 μm, compressive modulus: 600 kPa) (p < 0.01). Cell proliferation was significantly lower on the alginate-coated scaffolds (p < 0.05), probably due to weak cell adhesion on alginate, rapid degradation/dissolution of the alginate hydrogel (40% weight loss after 2 weeks of incubation) (p < 0.05), which resulted in loss of material and cells, and the decrease in the pH (p < 0.05), which probably resulted in decreased cell metabolic activity. Cells tended to get less round on the scaffolds prepared at -20 °C, which had lower compressive modulus and larger pores, and upon coating with alginate, which resulted in a hydrophilic surface that had lower stiffness. When the scaffolds had closer stiffness to the cells, the cells tended to get more branched. The most branched morphology of the fibroblasts was obtained in the presence of alginate, a natural polymer having a similar stiffness with that of the L929 fibroblasts (4 kPa).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.11.169 | DOI Listing |
Biofabrication
January 2025
Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, DO2 YN77, IRELAND.
Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol-gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!