Cell behavior on the alginate-coated PLLA/PLGA scaffolds.

Int J Biol Macromol

BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey; Department of Biological Sciences, METU, Ankara, Turkey; Graduate Department of Biotechnology, METU, Ankara, Turkey; Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey. Electronic address:

Published: March 2019

Here, we investigated the effect of preparation temperature and alginate-coating on L929 fibroblast behavior on lyophilized microporous PLLA/PLGA (95:5, w/w) scaffolds. The lower freezing temperature used during lyophilization (-80 °C) resulted in smaller pores (around 50 μm) and higher compressive modulus (1500 kPa) than those prepared at the higher temperature (-20 °C) (pore size: 120 μm, compressive modulus: 600 kPa) (p < 0.01). Cell proliferation was significantly lower on the alginate-coated scaffolds (p < 0.05), probably due to weak cell adhesion on alginate, rapid degradation/dissolution of the alginate hydrogel (40% weight loss after 2 weeks of incubation) (p < 0.05), which resulted in loss of material and cells, and the decrease in the pH (p < 0.05), which probably resulted in decreased cell metabolic activity. Cells tended to get less round on the scaffolds prepared at -20 °C, which had lower compressive modulus and larger pores, and upon coating with alginate, which resulted in a hydrophilic surface that had lower stiffness. When the scaffolds had closer stiffness to the cells, the cells tended to get more branched. The most branched morphology of the fibroblasts was obtained in the presence of alginate, a natural polymer having a similar stiffness with that of the L929 fibroblasts (4 kPa).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.11.169DOI Listing

Publication Analysis

Top Keywords

compressive modulus
8
cell behavior
4
behavior alginate-coated
4
alginate-coated plla/plga
4
plla/plga scaffolds
4
scaffolds investigated
4
investigated preparation
4
preparation temperature
4
temperature alginate-coating
4
alginate-coating l929
4

Similar Publications

Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis.

View Article and Find Full Text PDF

: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol-gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!