A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of modified hyaluronic acid in terms of rheology, enzymatic degradation and mucoadhesion. | LitMetric

Evaluation of modified hyaluronic acid in terms of rheology, enzymatic degradation and mucoadhesion.

Int J Biol Macromol

University of Innsbruck, Institute of Pharmacy, Department of Pharmaceutical Technology, Innrain 20-82, 6020 Innsbruck, Austria.

Published: February 2019

Purpose: This study aimed to investigate the properties of modified hyaluronic acid in terms of rheological properties, enzymatic degradation and mucoadhesiveness.

Methods: Hyaluronic acid (HA) was chemically modified with sulfhydryl ligand cysteine ethyl ester (C) in order to immobilize sulfhydryl groups on the polymeric backbone. MTT assay was performed to evaluate the safety of hyaluronic acid-cysteine ethyl ester (HAC). Rheological and enzymatic degradation studies were accomplished by preparing hydrogels of HA and HAC, respectively. HA served as control. Enzymes such as lysozyme, amylase and hyaluronidase were chosen to perform degradation studies. To study mucoadhesiveness, hydrogels of HA and HAC, respectively, were mixed with mucus and evaluated by rheology.

Results: MTT assay indicated no toxicity at all. The rheological assay showed 2.2-fold increase in gelling properties in case of HAC in comparison to HA. Furthermore, it could be shown that HAC was degraded by amylase to a lesser extent of 11.5-fold than HA. After 2 h, HA showed a higher degradation by lysozyme with 67.97% than HAC. Adhesion studies exhibited a 2.17-fold higher mucoadhesion of HAC with mucus compared to HA.

Conclusion: These results will open the door for high efficient drug delivery systems based on hydrogels for mucosal application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.11.186DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
12
enzymatic degradation
12
modified hyaluronic
8
acid terms
8
ethyl ester
8
mtt assay
8
degradation studies
8
hydrogels hac
8
hac
7
degradation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!