The superficial layer of the skin, the stratum corneum (SC), consists of corneocytes surrounded by lipid regions and acts as a protective barrier for the body against water loss, toxic agents and microorganisms. As most substances permeate the stratum corneum through the lipid regions, lipid organization is considered crucial for the skin barrier function. Here, we investigate the potential of in vivo confocal Raman spectroscopy to describe the composition and organization of the SC. Confocal Raman spectroscopy is finding increasing use in the characterization of skin in biomedical, pharmaceutical and cosmetic applications. In this work, we analyze the spectra using chemometric methods and obtain principal components that correspond to the primary skin constituents: protein (keratin), natural moisturizing factor (NMF), water and lipid contributions in both ordered (orthorhombic) and disordered structural organization. By identifying these important components of the SC, these results highlight the utility of this in vivo, non-invasive, and depth resolved tool at the forefront of skin research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2018.11.007 | DOI Listing |
Int J Biol Macromol
January 2025
College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
This study successfully developed a gelatin-sodium carboxymethyl cellulose-peach gum composite microcapsule system using the complex coacervation method. Optimal preparation conditions were determined by turbidity, complex condensate yield and encapsulation efficiency: the ratio of gelatin to sodium carboxymethyl cellulose was 7:1, the ratio of gelatin/sodium carboxymethyl cellulose to peach gum was 4:1, and the pH value was 4.2.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
UMR SayFood 0782, Université Paris-Saclay, INRAE, Palaiseau, AgroParisTech, France.
Assessing the contamination of paper and board (P&B) food packaging materials poses significant challenges due to the sensitivity limits of analytical methods and the low precision of sampling processes. This study aims to enhance the understanding of P&B food packaging contamination by investigating the distribution of contaminants at different scales using a combination of chromatographic and spectroscopic techniques. A total of 36 substances were targeted, including phthalates, photoinitiators, and bisphenol A.
View Article and Find Full Text PDFACS Photonics
January 2025
Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
Confocal Raman microscopy, a highly specific and label-free technique for the microscale study of thick samples, often presents difficulties due to weak Raman signals. Inhomogeneous samples introduce wavefront aberrations that further reduce these signals, requiring even longer acquisition times. In this study, we introduce Adaptive Optics to confocal Raman microscopy for the first time to counteract such aberrations, significantly increasing the Raman signal and image quality.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFNanotechnology
January 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.
Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!