Na-ion batteries represent a promising complementary alternative to Li-ion batteries due to their high energy density and natural abundancy of Na. However, these batteries have short cycle life and extensive research activities on these batteries are required to understand the mechanism of such drawbacks. In this report, we investigate the capacity fading mechanism of NaMnOvia ex situ X-ray diffraction, X-ray absorption spectroscopy, Fourier transform infrared spectroscopy and magnetization measurements. Our results show that the unit cell volume, the effective mass of Mn-O bonds, the number of Mn ions and the effective magnetic moment decrease upon repeated cycling. We propose that some Mn ions in the octahedral environment become Mn ions in a square pyramidal environment, causing oxygen release upon cycling. Any free oxygen in the battery is expected to react with the electrolyte and cause capacity fade.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt03508cDOI Listing

Publication Analysis

Top Keywords

capacity fading
8
fading mechanism
8
mechanism namnovia
8
namnovia situ
8
magnetization measurements
8
investigations capacity
4
situ xas
4
xas magnetization
4
measurements na-ion
4
batteries
4

Similar Publications

The rapid growth of modern Internet applications demands ever-increasing transmission capacity and reduced latency in optical interconnect systems utilizing intensity modulation and direct detection (IM/DD). However, the intrinsic limitations of silica-based standard single-mode fiber (SMF) will ultimately be insufficient to meet these escalating demands. The nested antiresonant nodeless fiber (NANF), a newly designed hollow-core fiber, has garnered significant attention as a potential solution to these challenges.

View Article and Find Full Text PDF

Vanadium-based Na superionic conductor (NASICON) type materials (NaVM(PO), M = transition metals) have attracted extensive attention when used as sodium-ion batteries (SIBs) cathodes due to their stable structures and large Na diffusion channels. However, the materials have poor electrical conductivity and mediocre energy density, which hinder their practical applications. Activating the V/V redox couple (V/V≈4.

View Article and Find Full Text PDF

Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin MnO thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance.

View Article and Find Full Text PDF

Terminally fluorinated ether 5FDEE shows exceptional compatibility with LiPF, enabling high-performance Li-metal batteries. Li‖NMC811 cells with a 1 M LiPF in 5FDEE : FEC (9 : 1 v/v) electrolyte demonstrate remarkable cycling stability with an average coulombic efficiency exceeding 99.9% and no capacity fading over 550 cycles at 2.

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!