Machine learning for image segmentation could provide expedited clinic workflow and better standardization of contour delineation. We evaluated a new model using deep decision forests of image features in order to contour pelvic anatomy on treatment planning CTs. 193 CT scans from one UK and two US institutions for patients undergoing radiotherapy treatment for prostate cancer from 2012-2016 were anonymized. A decision forest autosegmentation model was trained on a random selection of 94 images from Institution 1 and tested on 99 scans from Institution 1, 2, and 3. The accuracy of model contours was measured with the Dice similarity coefficient (DSC) and the median slice-wise Hausdorff distance (MSHD) using clinical contours as the ground truth reference. Two comparison studies were performed. The accuracy of the model was compared to four commercial software packages on twenty randomly-selected images. Additionally, inter-observer variability (IOV) of contours between three radiation oncology experts and the original contours was evaluated on ten randomly-selected images. The highest median values of DSC across all institutions were 0.94-0.97 for bladder (with interquartile range, or IQR, of 0.92-0.98) and 0.96-0.97 (IQR 0.94-0.97) for femurs. Good agreement was seen for prostate, with median DSC 0.75-0.76 (IQR 0.67-0.82), and rectum, with median DSC 0.71-0.82 (IQR 0.63-0.87). The lowest median scores were 0.49-0.70 for seminal vesicles (IQR 0.31-0.79). For the commercial software comparison, model-based segmentation produced higher DSC than atlas-based segmentation, with decision forests producing highest DSC for all organs of interest. For the interobserver study, variability in DSC between observers was similar to the agreement between the model and ground truth. Deep decision forests of radiomic features can generate contours of pelvic anatomy with reasonable agreement with physician contours. This method could be useful for automated treatment planning, and autosegmentation may improve efficiency and increase standardization in the clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aaeaa4 | DOI Listing |
J Med Internet Res
January 2025
Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
INSERM, IMRBU955, Univ Paris Est Créteil, Créteil, France.
Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).
Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).
J Med Internet Res
January 2025
Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, US.
Background: Most cancer survivors have multiple cardiovascular risk factors, increasing their risk of poor cardiovascular and cancer outcomes. The Automated Heart-Health Assessment (AH-HA) tool is a novel electronic health record clinical decision support tool based on the American Heart Association's Life's Simple 7 cardiovascular health (CVH) metrics to promote CVH assessment and discussion in outpatient oncology. Before proceeding to future implementation trials, it is critical to establish the acceptability of the tool among providers and survivors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, Virginia Tech, Arlington, VA, United States of America.
Trade in wood and forest products spans the global supply chain. Illegal logging and associated trade in forest products present a persistent threat to vulnerable ecosystems and communities. Illegal timber trade has been linked to violations of tax and conservation laws, as well as broader transnational crimes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Health Informatics, School of Public Health, College of Medicine and Health Science, Woldia University, Woldia, Ethiopia.
Background: Stunting is a vital indicator of chronic undernutrition that reveals a failure to reach linear growth. Investigating growth and nutrition status during adolescence, in addition to infancy and childhood is very crucial. However, the available studies in Ethiopia have been usually focused in early childhood and they used the traditional stastical methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!