HF etched glass substrates for improved thin-film solar cells.

Heliyon

College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Published: October 2018

A hemisphere-array textured glass substrate was fabricated for the development of an improved thin-film (TF) silicon solar cell. The HF-HSO-etchant system influenced the light path owing to the formation of the strong fluorine-containing HSOF acid. In particular, the etching system of the various HF concentration with a constant HSO solution is related to make an improvement of optical transmittance and light trapping structure without a uniform pattern. According to the specular transmittance measurements, the haze ratio was maintained for the glass sample etched with 35% HF in the longer-wavelength region. The proposed substrate was implemented in a TF-Si solar cell, and an improved conversion efficiency was observed according to the short-circuit current density owing to the increase in the haze ratio. This morphology, therefore, induces more scattering at the front side of the cell and leads to an improvement of the open circuit voltage gain for the HF 25% cell. It will be helpful to understand the application of thin film solar cell based on the HF-HSO etching system for the readers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235826PMC
http://dx.doi.org/10.1016/j.heliyon.2018.e00835DOI Listing

Publication Analysis

Top Keywords

solar cell
12
improved thin-film
8
etching system
8
haze ratio
8
cell
5
etched glass
4
glass substrates
4
substrates improved
4
solar
4
thin-film solar
4

Similar Publications

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.

View Article and Find Full Text PDF

The Effect of Antisolvent Treatment on the Growth of 2D/3D Tin Perovskite Films for Solar Cells.

ACS Energy Lett

January 2025

Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.

Antisolvent treatment is used in the fabrication of perovskite films to control grain growth during spin coating. We study widely incorporated aromatic hydrocarbons and aprotic ethers, discussing the origin of their performance differences in 2D/3D Sn perovskite (PEAFASnI) solar cells. Among the antisolvents that we screen, diisopropyl ether yields the highest power conversion efficiency in solar cells.

View Article and Find Full Text PDF

Sulfur Vacancies Limit the Open-Circuit Voltage of SbS Solar Cells.

ACS Energy Lett

January 2025

Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.

Antimony sulfide (SbS) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of SbS-based solar cells has remained stagnant over the past decade, largely due to trap-assisted nonradiative recombination. Here we assess the trap-limited conversion efficiency of SbS by investigating nonradiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics.

View Article and Find Full Text PDF

Mitigation of Self-p-Doping and Off-Centering Effect in Tin Perovskite via Strontium Doping.

ACS Energy Lett

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.

Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.

View Article and Find Full Text PDF

All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!