Cerebrovascular surgery treats vessel abnormalities in the brain and spinal cord, including arteriovenous malformations (AVMs) and aneurysms. These procedures often involve clipping the vessels feeding blood to these abnormalities, making accurate classification of blood vessel types (feeding versus draining) important during surgery. Previous work to guide the intraoperative identification of the vessels included augmented reality (AR) using pre-operative images, injected dyes, and Doppler ultrasound, but each with their drawbacks. The authors propose and demonstrate a novel technique to help differentiate vessels by enhancing short videos of a few seconds from the surgical microscope using motion magnification and spectral analysis, and constructing AR views that fuse the analysis results as intuitive colourmaps and the surgical microscopic view. They demonstrated the proposed technique retrospectively with two real cerebrovascular surgical cases: one AVM and one aneurysm. The results showed that the proposed technique can help characterise different vessel types (feeding and draining the abnormality), which agree with those identified by the operating surgeon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222178PMC
http://dx.doi.org/10.1049/htl.2018.5069DOI Listing

Publication Analysis

Top Keywords

augmented reality
8
cerebrovascular surgery
8
vessel types
8
types feeding
8
technique help
8
proposed technique
8
reality guidance
4
guidance cerebrovascular
4
surgery microscopic
4
microscopic video
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!