A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Antarctic Circumpolar Current isolates and connects: Structured circumpolarity in the sea star . | LitMetric

Aim: The Antarctic Circumpolar Current (ACC) connects benthic populations by transporting larvae around the continent, but also isolates faunas north and south of the Antarctic Convergence. We test circumpolar panmixia and dispersal across the Antarctic Convergence barrier in the benthic sea star .

Location: The Southern Ocean and south Atlantic Ocean, with comprehensive sampling including the Magellanic region, Scotia Arc, Antarctic Peninsula, Ross Sea, and East Antarctica.

Methods: The cytochrome c oxidase subunit I (COI) gene ( = 285) and the internal transcribed spacer region 2 (ITS2;  = 33) were sequenced. We calculated haplotype networks for each genetic marker and estimated population connectivity and the geographic distribution of genetic structure using Φ for COI data.

Results: is a single circum-Antarctic species with instances of gene flow between distant locations. Despite the homogenizing potential of the ACC, population structure is high (Φ = 0.5236), and some subpopulations are genetically isolated. Genetic breaks in the Magellanic region do not align with the Antarctic Convergence, in contrast with prior studies. Connectivity patterns in East Antarctic sites are not uniform, with some regional isolation and some surprising affinities to the distant Magellanic and Scotia Arc regions.

Main Conclusions: Despite gene flow over extraordinary distances, there is strong phylogeographic structuring and genetic barriers evident between geographically proximate regions (e.g., Shag Rocks and South Georgia). Circumpolar panmixia is rejected, although some subpopulations show a circumpolar distribution. Stepping-stone dispersal occurs within the Scotia Arc but does not appear to facilitate connectivity across the Antarctic Convergence. The patterns of genetic connectivity in Antarctica are complex and should be considered in protected area planning for Antarctica.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238125PMC
http://dx.doi.org/10.1002/ece3.4551DOI Listing

Publication Analysis

Top Keywords

antarctic convergence
16
scotia arc
12
antarctic
8
antarctic circumpolar
8
circumpolar current
8
sea star
8
circumpolar panmixia
8
magellanic region
8
gene flow
8
genetic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!