Oscillating waves during sleep play an essential role in memory consolidation. The cortical slow wave activity (SWA) and sigma waves during NREM sleep and theta waves during REM sleep increase after a variety of memory tasks including declarative, procedural and associative learning tasks. These oscillatory waves during sleep help to promote neural dialog between circuitries, which possibly plays a causal role in memory consolidation. However, the role of sleep-associated oscillating waves in a complex appetitive-conditioning paradigm is not clear. The parietal cortex and amygdala are involved in the cognitive evaluation of the environmental stimuli, and appetitive conditioning. Here, we have studied the changes in sleep architecture and oscillatory waves during NREM and REM sleep in the parietal cortices and amygdalar-local field potential (A-LFP) after appetitive-conditioning in the rat. We observed that REM sleep increased significantly after appetitive conditioning, which significantly positively correlated with performance on the appetitive-conditioning task. Further, the cortical SWA (0.1-4.5 Hz), and sigma (12-14.25 Hz) waves during NREM sleep, theta (6-9 Hz) waves during REM sleep, the amygdalar SWA (0.1-3.75 Hz) during NREM sleep and theta (6-8.25 Hz) waves during REM sleep significantly increased after appetitive conditioning. Interestingly, the augmented oscillatory waves significantly positively correlated with the performances on the appetitive-conditioning task. Our results suggest that the augmented REM sleep after conditioning may be required for the consolidation of appetitive-conditioned memory. Further, a significant correlation between augmented power in oscillatory waves during sleep and performance suggesting that these waves may be playing a crucial role in the consolidation of appetitive-conditioned memory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234907PMC
http://dx.doi.org/10.3389/fnbeh.2018.00260DOI Listing

Publication Analysis

Top Keywords

rem sleep
24
oscillatory waves
20
waves sleep
16
sleep
14
waves
13
waves nrem
12
nrem sleep
12
sleep theta
12
waves rem
12
appetitive conditioning
12

Similar Publications

Objective/background: Comorbid insomnia with obstructive sleep apnea (COMISA) is associated with worse daytime function and more medical/psychiatric comorbidities vs either condition alone. COMISA may negatively impact sleep duration and reduce rapid eye movement (REM) sleep, thereby impairing cognition. These post-hoc analyses evaluated the effect of lemborexant (LEM), a dual-orexin-receptor antagonist approved for adults with insomnia, on sleep architecture in participants with COMISA.

View Article and Find Full Text PDF

Background: Isolated rapid-eye movement (REM) sleep behavior disorder (iRBD) is characterized by abnormal behaviors in REM sleep and is considered as a prodromal symptom of alpha-synucleinopathies. Resting-state functional magnetic resonance imaging (rsfMRI) studies have unveiled altered functional connectivity (rsFC) in patients with iRBD. However, the associations between intra- and inter-network rsFC with clinical symptoms and neuropsychological functioning in iRBD remain unclear.

View Article and Find Full Text PDF

Non-motor symptoms (NMS) in Parkinson's disease (PD) significantly impact quality of life, especially in later stages. REM sleep behavior disorder (RBD) affects approximately 42% of all PD patients and frequently precedes motor PD symptoms. RBD is linked to increased rates of depression and cognitive decline.

View Article and Find Full Text PDF

Background:  Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is characterized by loss of the normal atonia of REM sleep accompanied by repetitive motor and behavior phenomena of dream content.

Objective:  To evaluate the reliability and validity of the Turkish version of the original form of the Innsbruck Rapid Eye Movement Sleep Behavior Disorder Diagnostic Inventory (IRBD-9) scale (IRBD-9-TR) and ensure that this screening test can be easily used in the Turkish language.

Methods:  The present is a multicenter and prospective study involving 184 patients: 51 with iRBD and 133 healthy controls.

View Article and Find Full Text PDF

"Multimodal Sleep Signal Tensor Decomposition and Hidden Markov Modeling for Temazepam-Induced Anomalies Across Age Groups".

J Neurosci Methods

January 2025

School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA.

Background: Recent advances in multimodal signal analysis enable the identification of subtle drug-induced anomalies in sleep that traditional methods often miss.

New Method: We develop and introduce the Dynamic Representation of Multimodal Activity and Markov States (DREAMS) framework, which embeds explainable artificial intelligence (XAI) techniques to model hidden state transitions during sleep using tensorized EEG, EMG, and EOG signals from 22 subjects across three age groups (18-29, 30-49, and 50-66 years). By combining Tucker decomposition with probabilistic Hidden Markov Modeling, we quantified age-specific, temazepam-induced hidden states and significant differences in transition probabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!