Introduction: Novel and safe delivery solutions for RNAi therapeutics are essential to obtain the full potential of cancer gene therapy.

Methods: In this study, cationic vesicular nanocarrier was applied for delivering lnc urothelial carcinoma-associated 1 (lnc UCA1) shRNA expression vector to MCF-7 cells. The physicochemical characteristics, cytotoxicity, and transfection efficiency of cationic vesicles prepared from various molar ratios of amphiphilic surfactant Tween 80 (T), squalene (S), cationic charge lipid didodecyldimethylammonium bromide, and polyethylenimine were investigated. The particle sizes of the vesicles in the nanosize range were determined by dynamic light scattering and transmission electron microscopy.

Results: Gel protection assay with agarose gel electrophoresis showed cationic vesicles can protect the shRNA plasmid from DNase 1 enzyme. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt result showed no significant cytotoxicity was caused in MCF-7 cancer cell line by (T:S):polyethylenimine cationic vesicles. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, fluorescence microscope images, and flow cytometry analyses confirmed that (T:S) with 4.3 μg/mL of PEI vesicles provided effective transfection without significant cytotoxicity. Furthermore, we found efficient UCA1 shRNA transfection and significant (<0.05) cell cycle arrest and apoptosis in MCF-7 cancer cells.

Conclusion: The novel nonviral vesicular nanocarrier, (T:S) with 4.3 μg/mL of PEI, might be safe and efficient for cancer gene therapy and can be used in further in vitro and in vivo studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6228047PMC
http://dx.doi.org/10.2147/IJN.S177674DOI Listing

Publication Analysis

Top Keywords

cationic vesicles
16
shrna transfection
8
cancer cell
8
uca1 shrna
8
3-45-dimethylthiazol-2-yl-5-3-carboxymethoxyphenyl-2-4-sulfophenyl-2h tetrazolium
8
tetrazolium inner
8
inner salt
8
cationic
6
vesicles
5
vesicles efficient
4

Similar Publications

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

Background: We previously identified the novel mechanism of pathological tau transfer via extracellular vesicles (EVs) in Alzheimer's disease (AD). Targeting EV secretion to mitigate tau transfer is therefore a promising therapeutic approach for AD. P2X purinoreceptor 7 (P2RX7), an ATP-gated cationic channel, regulates microvesicle shedding or secretion of multivesicular body-derived exosomes.

View Article and Find Full Text PDF

Lipophilicity Modulation of Fluorescent Probes for Imaging of Cellular Microvesicle Dynamics.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-C, with ranging from 1 to 18) that feature varying aliphatic side chains (CH).

View Article and Find Full Text PDF

Cationic liposomes as carriers of natural compounds from plant extract.

Biophys Chem

December 2024

Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Lipid-based nanocarriers provide versatile platforms for the encapsulation and delivery of many different bioactive compounds to improve the solubility, stability and therapeutic efficacy of bioactive phyto-compounds. In this study, liposomes were used to load leaf extract of Coffea Arabica, which is known to be rich beneficial substances such as alkaloids, flavonoids, etc. The aim of this work is to optimize the valorization of agricultural wastes containing natural antioxidants.

View Article and Find Full Text PDF

Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications.

Adv Colloid Interface Sci

December 2024

Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:

Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!