Background: Titanium dioxide nanoparticles have numerous applications, resulting in human exposure. Nonetheless, available toxicological and safety data are insufficient regarding aspherical particles, such as rod-shaped nanoparticles.
Methods: In a combined in vitro-in vivo approach, cultured A549 lung alveolar adenocarcinoma cells were treated with approximately 15×65 nm TiO nanorod-containing medium, while young adult rats received the same substance by intratracheal instillation for 28 days in 5 and 18 mg/kg body-weight doses. Nanoparticle accumulation in the lungs and consequent oxidative stress, cell damage, and inflammation were assessed by biochemical and histopathological methods.
Results: Titanium was detected in tissue samples by single-particle inductively coupled plasma mass spectrometry. Nanoparticles were visualized inside cultured A549 cells, within pulmonary macrophages, and in hilar lymph nodes of the rats. A549 cells showed dose-dependent oxidative stress and lethality, and the observed nanoparticle-laden endosomes suggested deranged lysosomal function and possible autophagy. Strongly elevated Ti levels were measured in the lungs of nanorod-treated rats and moderately elevated levels in the blood of the animals. Numerous cytokines, indicating acute and also chronic inflammation, were identified in the lung samples of TiO-exposed rodents.
Conclusion: Several signs of cell and tissue damage were detected in both the cultured alveolar cells and in treated rats' lungs. Rod-shaped nanoparticulate TiO may consequently be more harmful than has generally been supposed. The occupational health risk suggested by the results calls for improved safety measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220432 | PMC |
http://dx.doi.org/10.2147/IJN.S179159 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, Delhi Skill and Entrepreneurship University, Delhi, 110089, India.
This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration of 1 vol% compared to base fluid.
View Article and Find Full Text PDFJ Tissue Viability
December 2024
Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt; Nile Valley University, Fayoum, 63518 Egypt. Electronic address:
Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:
Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO nanoparticles (TiO@OMV) to combine these effects for improved OSCC treatment.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA.
The safety of titanium dioxide (TiO), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!