We performed a basic evaluation for measuring the input function using a fan-beam collimator. Furthermore, we examined the validity of the brain blood flow quantitative measurement from the input function. Using the fanbeam collimator, we imaged syringes of various diameters containing Tc as well as a virtual aorta inside a thoracic phantom. We changed the collimator distance and angle in relation to the sources, and the syringe was placed in vertical and horizontal positions as well. For evaluation, we used region of interest (ROI) of various sizes and positions. Furthermore, we conducted clinical evaluation for 19 subjects and calculated whole-brain mean cerebral blood flow using improved brain uptake ratio method by examination of Tc-ECD cerebral blood flow. For ROIs smaller in size than diameter of the syringes and virtual ascending aorta, amount of change in the ROI counts by fan-beam collimator became smaller as distance to the source became closer, with less than 5% at 175 mm. Also, change with respect to angle of the collimator was less than 5% at 20°. In a clinical study, aortas could be imaged without truncation and input-functions could be measured in all 19 patients. By using ROIs smaller than the aorta diameter and placing the collimator close to the source, it was suggested that fan-beam collimator can be used to determine the input function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.2018_JSRT_74.11.1302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!