A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The function of the ophiuroid nerve ring: how a decentralized nervous system controls coordinated locomotion. | LitMetric

The function of the ophiuroid nerve ring: how a decentralized nervous system controls coordinated locomotion.

J Exp Biol

Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.

Published: January 2019

Echinoderms lack a centralized nervous control system, yet each extant echinoderm class has evolved unique and effective strategies for locomotion. Brittle stars (Ophiuroidea) stride swiftly over the seafloor by coordinating motions of their five muscular arms. Their arms consist of many repeating segments, requiring them to use a complex control system to coordinate motions among segments and between arms. We conducted experiments with brittle stars to analyze the functional role of the nerve ring, which connects the nerves in each arm. These experiments were designed to determine how the ophiuroid nervous system performs complex decision making and locomotory actions under decentralized control. Our results show that brittle star arms must be connected by the nerve ring for coordinated locomotion, but information can travel bidirectionally around the nerve ring so that it circumvents the severance. Evidence presented indicates that ophiuroids rely on adjacent nerve ring connections for sustained periodic movements. The number of arms connected via the nerve ring is correlated positively with the likelihood that the animal will show coordinated locomotion, indicating that integrated nerve ring tissue is critical for control. The results of the experiments should provide a basis for the advancement of complex artificial decentralized systems.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.192104DOI Listing

Publication Analysis

Top Keywords

nerve ring
28
coordinated locomotion
12
nervous system
8
control system
8
brittle stars
8
arms connected
8
connected nerve
8
nerve
7
ring
7
arms
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!