Membrane order and ionic strength modulation of the inhibition of the membrane-bound acetylcholinesterase by epigallocatechin‑3‑gallate.

Biochim Biophys Acta Biomembr

Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabe Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Tucumán, Argentina. Electronic address:

Published: January 2019

In the present work, we analyzed how external factors can modulate the efficiency of epigallocatechin‑3‑O‑gallate (EGCG) inhibition of a membrane-bound isoform of the acetylcholinesterase. Increasing the ionic strength but not the osmolarity of the bulk medium proved to be an important factor. In addition, we verified a clear correlation between the inhibitory activity with the order degree of the membranes by using cholesterol-partially depleted red blood cell ghosts. These two factors i.e. high salt concentration in the bulk medium and less viscous membranes, allow a deeper insertion of the EGCG into the lipid bilayer, thus leading to a greater inhibition of AChE. As a corollary, we propose that any treatment or process that leads to a slight decrease in cholesterol content in the membranes can efficiently enhance the inhibitory activity of EGCG, which can have important consequences in all the pathologies where the inhibition of AChE is recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2018.08.002DOI Listing

Publication Analysis

Top Keywords

ionic strength
8
inhibition membrane-bound
8
bulk medium
8
inhibitory activity
8
inhibition ache
8
membrane order
4
order ionic
4
strength modulation
4
inhibition
4
modulation inhibition
4

Similar Publications

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

Microrheology has become an indispensable tool for measuring the dynamics of macromolecular systems. Yet, its ability to characterize polymer dynamics across spatiotemporal scales, which vary among polymers and concentration regimes, is limited by the selection of probe morphologies and sizes. Here, we introduce semiflexible M13 phage as a powerful microrheological probe able to circumvent these constraints to robustly capture the dynamics of polymeric solutions across decades of concentrations, sizes, and ionic conditions.

View Article and Find Full Text PDF

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.

View Article and Find Full Text PDF

Exploring the Effects of Ionic Liquid on the Toughness of Palm Leaf Manuscripts.

Langmuir

January 2025

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility.

View Article and Find Full Text PDF

Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!