Phloem network integrates cellular energy status into post-embryonic growth, and development by tight regulation of carbon allocation. Phloem development involves complicated coordination of cell fate determination, cell division, and terminal differentiation into sieve elements (SEs), functional conduit. All of these processes must be tightly coordinated, for optimization of systemic connection between source supplies and sink demands throughout plant life cycle, that has substantial impact on crop productivity. Despite its pivotal role, surprisingly, regulatory mechanisms underlying phloem development have just begun to be explored, and we recently identified a novel translational regulatory network involving RNA G-quadruplex and a zinc-finger protein, JULGI, for phloem development. From this perspective, we further discuss the role of RNA G-quadruplex on post-transcriptional control of phloem regulators, as a potential interface integrating spatial information for asymmetric cell division, and phloem development. [BMB Reports 2018; 51(11): 547-548].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283031 | PMC |
http://dx.doi.org/10.5483/BMBRep.2018.51.11.253 | DOI Listing |
J Econ Entomol
December 2024
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China.
Arbuscular mycorrhizal fungi may promote growth and stress resilience of plants, particularly under water-deficit conditions. However, interactions among mycorrhizal fungi, wheat plants, and aphids like the English grain aphid Sitobion avenae (Hemiptera: Aphididae) under water-deficit stress are still not well understood. Here, we examined the colonization of the fungus Claroideoglomus etunicatum (Glomerales: Claroideoglomeraceae) on wheat, and its effects on development and behavior of S.
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
Department of Botany, Bharathiar University, Coimbatore, India.
Vincetoxicum capparidifolium (Wight & Arn.) Kuntze [=Tylophora capparidifolia (Wight & Arn.) Kuntze], belonging to the family Apocynaceae, is a medicinal plant species endemic to the southern Western Ghats, Tamil Nadu, India.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Villányi Út 29-43, Budapest, Hungary.
Background: The use of vegetable grafting has proven to be effective not only in providing stress resistance but also improving fruit yields. There have been no studies on grafted vegetables' effects on the vascular systems, specifically xylem vessels. This study tested the effects of two groups of rootstocks, Solanum spp.
View Article and Find Full Text PDFPlant Physiol
December 2024
College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China.
Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.
View Article and Find Full Text PDFPestic Biochem Physiol
January 2025
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!