Novel self-assembling conjugates as vectors for agrochemical delivery.

J Nanobiotechnology

School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia.

Published: November 2018

Background: Modern agricultural practises rely on surfactant-based spray applications to eliminate weeds in crops. The wide spread and indiscriminate use of surfactants may result in a number of deleterious effects that are not limited to impacts on the crop and surrounding farm eco-system but include effects on human health. To provide a safer alternative to the use of surfactant-based formulations, we have synthesised a novel, self-assembling herbicide conjugate for the delivery of a broad leaf herbicide, picloram.

Results: The synthesized self-assembling amphiphile-picloram (SAP) conjugate has three extending arms: a lipophilic lauryl chain, a hydrophilic polyethylene glycol chain and the amphiphobic agrochemical active picloram. We propose that the SAP conjugate maintains its colloidal stability by quickly transitioning between micellar and inverse micellar phases in hydrophilic and lipophilic environments respectively. The SAP conjugate provides the advantage of a phase structure that enables enhanced interaction with the hydrophobic epicuticular wax surface of the leaf. We have investigated the herbicidal efficiency of the SAP conjugate compared against that of commercial picloram formulations using the model plant Arabidopsis thaliana and found that when tested at agriculturally relevant doses between 0.58 and 11.70 mM a dose-dependent herbicidal effect with comparable kill rates was evident.

Conclusion: Though self-assembling drug carriers are not new to the pharmaceutical industry their use for the delivery of agrochemicals shows great promise but is largely unexplored. We have shown that SAP may be used as an alternative to current surfactant-based agrochemical formulations and has the potential to shift present practises towards a more sustainable approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247628PMC
http://dx.doi.org/10.1186/s12951-018-0423-5DOI Listing

Publication Analysis

Top Keywords

sap conjugate
16
novel self-assembling
8
conjugate
5
sap
5
self-assembling conjugates
4
conjugates vectors
4
vectors agrochemical
4
agrochemical delivery
4
delivery background
4
background modern
4

Similar Publications

Conjugated bile acids alleviate acute pancreatitis through inhibition of TGR5 and NLRP3 mediated inflammation.

J Transl Med

December 2024

Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.

Introduction: Severe acute pancreatitis (SAP) is a crucial gastrointestinal disease characterized by systemic inflammatory responses and persistent multiple organ failure. The role of bile acids (BAs) in diverse inflammatory diseases is increasingly recognized as crucial, but the underlying role of BA conjugation remains elusive.

Objectives: Our study aim to investigate the potential role of conjugated bile acids in SAP and reveal the molecular mechanisms underlying its regulatory effects.

View Article and Find Full Text PDF

Introduction: Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (, phrenic) motor neuron death and mimics aspects of motor neuron disease [(, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (.

View Article and Find Full Text PDF

First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity.

Chem Asian J

December 2024

Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.

Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule.

View Article and Find Full Text PDF
Article Synopsis
  • Tongue weakness in motor neuron diseases like ALS can severely impact breathing and swallowing, leading to serious health risks such as respiratory failure and pneumonia.
  • Researchers used a rodent model to study the effects of a tongue exercise program on maintaining upper airway function and structure in these patients.
  • The study found that tongue exercises improved respiratory function and reduced structural airway changes, highlighting their potential role as a therapeutic approach for patients with motor neuron diseases.
View Article and Find Full Text PDF

Arabidopsis hydathodes are sites of auxin accumulation and nutrient scavenging.

Plant J

November 2024

Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France.

Article Synopsis
  • Hydathodes are small structures on plant leaves that help release excess water and nutrients, a process known as guttation.
  • This study found that hydathodes in Arabidopsis express a high number of genes related to important functions like auxin metabolism, stress response, and nutrient transport.
  • The research revealed that hydathodes not only help in nutrient retention by capturing essential elements like nitrate and phosphate but also show distinct physiological roles through extensive gene and metabolite analysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!