Background: Modern agricultural practises rely on surfactant-based spray applications to eliminate weeds in crops. The wide spread and indiscriminate use of surfactants may result in a number of deleterious effects that are not limited to impacts on the crop and surrounding farm eco-system but include effects on human health. To provide a safer alternative to the use of surfactant-based formulations, we have synthesised a novel, self-assembling herbicide conjugate for the delivery of a broad leaf herbicide, picloram.
Results: The synthesized self-assembling amphiphile-picloram (SAP) conjugate has three extending arms: a lipophilic lauryl chain, a hydrophilic polyethylene glycol chain and the amphiphobic agrochemical active picloram. We propose that the SAP conjugate maintains its colloidal stability by quickly transitioning between micellar and inverse micellar phases in hydrophilic and lipophilic environments respectively. The SAP conjugate provides the advantage of a phase structure that enables enhanced interaction with the hydrophobic epicuticular wax surface of the leaf. We have investigated the herbicidal efficiency of the SAP conjugate compared against that of commercial picloram formulations using the model plant Arabidopsis thaliana and found that when tested at agriculturally relevant doses between 0.58 and 11.70 mM a dose-dependent herbicidal effect with comparable kill rates was evident.
Conclusion: Though self-assembling drug carriers are not new to the pharmaceutical industry their use for the delivery of agrochemicals shows great promise but is largely unexplored. We have shown that SAP may be used as an alternative to current surfactant-based agrochemical formulations and has the potential to shift present practises towards a more sustainable approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247628 | PMC |
http://dx.doi.org/10.1186/s12951-018-0423-5 | DOI Listing |
J Transl Med
December 2024
Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Introduction: Severe acute pancreatitis (SAP) is a crucial gastrointestinal disease characterized by systemic inflammatory responses and persistent multiple organ failure. The role of bile acids (BAs) in diverse inflammatory diseases is increasingly recognized as crucial, but the underlying role of BA conjugation remains elusive.
Objectives: Our study aim to investigate the potential role of conjugated bile acids in SAP and reveal the molecular mechanisms underlying its regulatory effects.
Front Physiol
December 2024
Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States.
Introduction: Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (, phrenic) motor neuron death and mimics aspects of motor neuron disease [(, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule.
View Article and Find Full Text PDFFront Neurol
September 2024
Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States.
Plant J
November 2024
Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!