Motivation: Extensive efforts have been devoted to understanding the antigenic peptides binding to MHC class I and II molecules since they play a fundamental role in controlling immune responses and due their involvement in vaccination, transplantation, and autoimmunity. The genes coding for the MHC molecules are highly polymorphic, and it is difficult to build computational models for MHC molecules with few know binders. On the other hand, previous studies demonstrated that some MHC molecules share overlapping peptide binding repertoires and attempted to group them into supertypes. Herein, we present a framework of the utility of supertype clustering to gain more information about the data to improve the prediction accuracy of class II MHC-peptide binding.

Results: We developed a new method, called superMHC, for class II MHC-peptide binding prediction, including three MHC isotypes of HLA-DR, HLA-DP, and HLA-DQ, by using supertype clustering in conjunction with RLS regression. The supertypes were identified by using a novel repertoire dissimilarity index to quantify the difference in MHC binding specificities. The superMHC method achieves the state-of-the-art performance and is demonstrated to predict binding affinities to a series of MHC molecules with few binders accurately. These results have implications for understanding receptor-ligand interactions involved in MHC-peptide binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278554PMC
http://dx.doi.org/10.3390/molecules23113034DOI Listing

Publication Analysis

Top Keywords

mhc molecules
16
supertype clustering
12
class mhc-peptide
12
mhc-peptide binding
12
utility supertype
8
molecules binders
8
binding
7
mhc
7
molecules
5
clustering prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!