Paralytic shellfish Toxins (PSTs) or saxitoxins are neurotoxins that block the neural transmission by binding to the voltage-gated sodium channels in the nerve cells. There are >50 analogues described, which could be biotransformed into a molecular form of greater or lesser toxicity. The Alagados Reservoir is used for water supply, and persistent cyanobacterial blooms as well as PSTs concentrations have been found in this water body since 2002. The aims of this study were to quantify the concentrations of PSTs in the water and fish samples from the Alagados Reservoir. In addition, we evaluated the elimination of PSTs for 90 days in fish and estimated the potential risk to human health. Water and fish samples were collected from the reservoir. For the water samples the phytoplankton and chemical analyses were carried out. Fish were divided into two sample times: Field Samples (FS) and Elimination Experiment Samples (EES), which were maintained for 90 days in filtered and dechlorinated water. For chemical analysis, the muscles of FS were collected on the fish sampling day and the muscles and feces of EES were collected at 7, 15, 30, 45, 60, 75 and 90 days. PSTs concentrations were present in water and fish samples, and they were estimated as a potential risk to humans; mainly for children. In addition, toxins were accumulated, biotransformed to other analogues and excreted by the fish. However, after 90 days, the toxins were still present in the water and fish muscle. Therefore, PSTs can remain for a long period in water, and fish can be a carrier of these neurotoxins. New approaches of monitoring and management are necessary in the actual global context of cyanobacteria and cyanotoxins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.10.046DOI Listing

Publication Analysis

Top Keywords

water fish
20
fish samples
12
fish
10
water
10
paralytic shellfish
8
shellfish toxins
8
water supply
8
alagados reservoir
8
reservoir water
8
psts concentrations
8

Similar Publications

With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.

View Article and Find Full Text PDF

In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions.

View Article and Find Full Text PDF

Fish migration modeling and habitat assessment in a complex fluvial system.

J Environ Manage

January 2025

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:

Fish migration patterns are driven by hydrodynamic factors, which are essential in aquatic ecology. This study investigated the hydrodynamic drivers of Gymnocypris przewalskii fish migration in two distinct river reaches-a straight reach (SR) and a confluence reach (CR)- in the area of Qinghai Lake, China, using a 3D numerical model, fish density field data, and four predictive models. Thirteen hydrodynamic factors, with a focus on water depth and velocity, were analyzed to identify their influence on fish migration.

View Article and Find Full Text PDF

Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds.

J Hazard Mater

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas).

View Article and Find Full Text PDF

While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!