The indium-111 labeled Fab fragment of antimyosin monoclonal antibody was used to study cardiac rejection and the time course of myocyte damage after transplantation. Fifty-three studies were performed in 21 patients, 17 men and 4 women, aged 19 to 54 years (mean 37 +/- 8), from 7 to 40 months after transplantation. Repeat studies were available in 8, and 10 were studied after the first year of transplantation. A heart-to-lung ratio was used for quantitation of uptake (normal 1.46 +/- 0.04). Differences between absent (1.69 +/- 0.29) and moderate (1.90 +/- 0.36) rejection were significant (p less than 0.03). Antimyosin ratio at 1 to 3 months (1.89 +/- 0.35) differed from that at greater than 12 months (1.65 +/- 0.2) (p less than 0.01). Repeat studies revealed a decrease in antimyosin ratio in 5 patients with uneventful clinical course; 2 had persistent activity after transplantation and suffered heart failure from rejection. After 1 year of transplantation uptake was within normal limits in 7 of 10 patients, and high uptake was associated with vascular rejection in 1. Because they can define evolving patterns of myocardial lesion activity, antimyosin studies could be useful both in patient management and in concentrating resources for those patients who most require them. The heart-to-lung ratio is suggested to monitor sequentially the degree of myocyte damage after transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0002-9149(88)90667-4DOI Listing

Publication Analysis

Top Keywords

myocyte damage
12
damage transplantation
8
repeat studies
8
year transplantation
8
heart-to-lung ratio
8
uptake normal
8
antimyosin ratio
8
transplantation
7
+/-
6
antimyosin
5

Similar Publications

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

CTLA4-Ig reduces muscle fiber damage in a model of Duchenne muscular dystrophy by attenuating pro-inflammatory gene expression in myeloid lineage cells.

Am J Pathol

January 2025

Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:

Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.

View Article and Find Full Text PDF

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.

View Article and Find Full Text PDF

Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria.

View Article and Find Full Text PDF

Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review.

Physiol Res

December 2024

Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.

The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!