In oncology practice it has been introduced minimally invasive technology of puncture access for cryodestruction of tumors of various sites as well as obtained positive clinical results.

Download full-text PDF

Source

Publication Analysis

Top Keywords

minimally invasive
8
[technology minimally
4
invasive cryodestruction
4
cryodestruction recurrent
4
recurrent tumors]
4
tumors] oncology
4
oncology practice
4
practice introduced
4
introduced minimally
4
invasive technology
4

Similar Publications

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.

View Article and Find Full Text PDF

Endovascular treatment (EVT) for patients with lower extremity artery disease is widely used as a less invasive alternative to surgical bypass. Recently, transradial artery intervention has gained popularity owing to its minimally invasive nature. The distance from the radial artery to the target vessel is critical for success; however, effective pre-assessment methods have not yet been established.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!