Nipah virus (NiV) infection can lead to severe respiratory or neurological disease in humans. Transmission of NiV has been shown to occur through contact with virus contaminated fomites or consumption of contaminated food. Previous results using the African green monkey (AGM) model of NiV infection identified aspects of infection that, while similar to humans, don't fully recapitulate disease. Previous studies also demonstrate near uniform lethality that is not consistent with human NiV infection. In these studies, aerosol exposure using an intermediate particle size (7μm) was used to mimic potential human exposure by facilitating virus deposition in the upper respiratory tract. Computed tomography evaluation found some animals developed pulmonary parenchymal disease including consolidations, ground-glass opacities, and reactive adenopathy. Despite the lack of neurological signs, magnetic resonance imaging identified distinct brain lesions in three animals, similar to those previously reported in NiV-infected patients. Immunological characterization of tissues collected at necropsy suggested a local pulmonary inflammatory response with increased levels of macrophages in the lung, but a limited neurologic response. These data provide the first clear evidence of neurological involvement in the AGM that recapitulates human disease. With the development of a disease model that is more representative of human disease, these data suggest that NiV infection in the AGM may be appropriate for evaluating therapeutic countermeasures directed at virus-induced neuropathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281276PMC
http://dx.doi.org/10.1371/journal.pntd.0006978DOI Listing

Publication Analysis

Top Keywords

niv infection
16
aerosol exposure
8
exposure intermediate
8
nipah virus
8
neurological disease
8
african green
8
human disease
8
disease
7
niv
5
infection
5

Similar Publications

The limited but recurrent outbreaks of the zoonotic Nipah virus (NiV) infection in humans, its high fatality rate, and the potential virus transmission from human to human make NiV a concerning threat with pandemic potential. There are no licensed vaccines to prevent infection and disease. A recombinant Hendra virus soluble G glycoprotein vaccine (HeV-sG-V) candidate was recently tested in a Phase I clinical trial.

View Article and Find Full Text PDF

High-frequency percussive ventilation in acute respiratory failure.

ERJ Open Res

November 2024

Anaesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.

Introduction: High-frequency percussive ventilation (HFPV) is a ventilation mode characterised by high-frequency breaths. This study investigated the impact of HFPV on gas exchange and clinical outcomes in acute respiratory failure (ARF) patients during spontaneous breathing, noninvasive ventilation (NIV) and invasive mechanical ventilation (iMV).

Methods: This systematic review included randomised and nonrandomised studies up to August 2023.

View Article and Find Full Text PDF

Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine.

Antiviral Res

January 2025

Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany. Electronic address:

Article Synopsis
  • - RNA viruses like influenza and coronaviruses pose significant health threats, often lacking effective vaccines or treatments, while others like filo- and henipaviruses have high mortality rates despite limited outbreaks.
  • - The antiviral drug 4'-Fluorouridine (4'-FlU) inhibits RNA virus replication by targeting the RNA-dependent RNA polymerase, but its effectiveness varies across different viruses, necessitating strategies to improve its potency.
  • - Researchers found that inhibiting dihydroorotate dehydrogenase (DHODH) enhances the antiviral effects of 4'-FlU against several RNA viruses, including in models of infection, potentially by depleting uridine, which boosts 4'-FlU's incorporation into viral
View Article and Find Full Text PDF

Background: The importance of studying Nipah virus (NiV) stems from its high fatality rates and potential for causing widespread outbreaks. Recent incidences in Southeast Asian countries highlight the urgent need for effective risk evaluation and mitigation strategies.

Justification: Studying NiV in Southeast Asia is crucial due to the geographic and epidemiological significance that makes this region predominantly susceptible to the virus.

View Article and Find Full Text PDF

Background And Aims: The World Health Organization (WHO) recognized the potential for a severe international epidemic and introduced the term "Disease X" to classify pathogens that not yet identified. The Nipah virus (NiV) is highly dangerous due to its zoonotic nature, high mortality rate, and ability to cause severe clinical symptoms in humans. In this review, we gather the latest information on the NiV and its potential to become a significant candidate for Disease X.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!