As biomaterial therapies emerge to address adipose tissue dysfunction that underlies metabolic disease, the immune response to these systems must be established. As a potential therapy, we are investigating resveratrol delivery from porous poly(lactide- co-glycolide) scaffolds designed to integrate with adipose tissue. Resveratrol was selected for its ability to protect mice and primates from high fat diet and broad anti-inflammatory properties. Herein, we report fabrication of scaffolds with high resveratrol loading that are stable and active for up to one year. In vitro release profiles indicate that drug release is biphasic with a burst release over 3 days followed by a plateau. Surprisingly, we find that PLG scaffolds implanted into adipose tissue of mice promote an anti-inflammatory environment characterized by high arginase-1 and low TNF-α and IL-6 compared to naïve unmanipulated fat. Resveratrol delivery from the scaffold augments this anti-inflammatory environment by decreasing monocyte and lymphocyte numbers at the implant site and increasing expression of IL-10 and IL-13, cytokines that promote healthy adipose tissue. In terms of therapeutic applications, implant of scaffolds designed to release resveratrol into the visceral fat decreases MCP-1 expression in mice fed a high fat diet, a molecule that drives both local and systemic inflammation during obesity. Taken together, resveratrol delivery to adipose tissue using poly(lactide- co-glycolide) scaffolds is a promising therapeutic strategy for the treatment of adipose tissue inflammation that drives metabolic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076954PMC
http://dx.doi.org/10.1021/acsami.8b13421DOI Listing

Publication Analysis

Top Keywords

adipose tissue
28
resveratrol delivery
16
polylactide- co-glycolide
12
co-glycolide scaffolds
12
anti-inflammatory environment
12
delivery porous
8
porous polylactide-
8
metabolic disease
8
scaffolds designed
8
high fat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!