A series of seventeen hydroxyl-containing sphingosine 1-phosphate receptor 1 (S1PR1) ligands were designed and synthesized. Their in vitro binding potencies were determined using [32P]S1P competitive binding assays. Compounds 10a, 17a, 17b, and 24 exhibited high S1PR1 binding potencies with IC50 values ranging from 3.9 to 15.4 nM and also displayed high selectivity for S1PR1 over other S1P receptor subtypes (IC50 > 1000 nM for S1PR2-5). The most potent compounds 10a, 17a, 17b, and 24 were subsequently radiolabeled with F-18 in high yields and purities. MicroPET studies in cynomolgus macaque showed that [18F]10a, [18F]17a, and [18F]17b but not [18F]24 crossed the blood brain barrier and had high initial brain uptake. Further validation of [18F]10a, [18F]17a, and [18F]17b in preclinical models of neuroinflammation is warranted to identify a suitable PET radioligand to quantify S1PR1 expression in vivo as a metric of an inflammatory response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561338PMC
http://dx.doi.org/10.1039/c8ob02609bDOI Listing

Publication Analysis

Top Keywords

s1pr1 ligands
8
binding potencies
8
compounds 10a
8
10a 17a
8
17a 17b
8
[18f]10a [18f]17a
8
[18f]17a [18f]17b
8
s1pr1
5
syntheses vitro
4
vitro biological
4

Similar Publications

Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs.

Immunity

January 2025

Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.

View Article and Find Full Text PDF

Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment.

Pharmaceutics

November 2024

Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.

Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) characterized by myelin and axonal damage with a globally rising incidence. While there is no known cure for MS, various disease-modifying treatments (DMTs) exist, including those targeting Sphingosine-1-Phosphate Receptors (S1PRs), which play important roles in immune response, CNS function, and cardiovascular regulation. This study focuses on understanding how nonsynonymous single nucleotide polymorphisms (rs1299231517, rs1323297044, rs1223284736, rs1202284551, rs1209378712, rs201200746, and rs1461490142) in the S1PR1's active site affect the binding of endogenous ligands, as well as different drugs used in MS management.

View Article and Find Full Text PDF

Natural killer (NK) cells suppress cellular and humoral immune responses via killing of T cells, resulting in diminished vaccine responses in mice and humans. Efforts to overcome this roadblock and achieve optimal immunity require an improved understanding of the molecular mediators facilitating NK cell-targeting of discrete subsets of CD4 T cells. We employed single-cell forensic victimology and CRISPR-Cas9 editing to delineate a transcriptional program uniquely responsible for the susceptibility of a subpopulation of CD4 T cells to perforin-dependent immunoregulation by NK cells.

View Article and Find Full Text PDF

The successful development of germinal centers (GC) relies heavily on innate mechanisms to amplify the initial inflammatory cascade. In addition to their role in antigen presentation, innate cells are essential for the redirection of circulating lymphocytes toward the draining lymph node (dLN) to maximize antigen surveillance. Sphingosine-1-Phosphate (S1P) and its receptors (S1PR1-5) affect various aspects of immunity; however, the role of S1PR4 in regulating an immune response is not well understood.

View Article and Find Full Text PDF

Aims: Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!