Spatial heterodyne Raman spectrometry (SHRS) is a spectral analysis technique used to study material structures and compositions. We propose a multi-grating SHRS system that uses a multi-grating module rather than the single grating used to terminate each arm in traditional spatial heterodyne spectrometry (SHS). The proposed system not only retains the advantages of traditional SHS but also resolves the mutual limitation between system spectral range and resolution. The increased spectral range and resolution that can be achieved in detection are dependent on the number of sub-gratings used in the module. A verification system was built using 130 gr/mm and 150 gr/mm sub-gratings and calibrated. Under different experimental conditions (including laser power, integration time, container material and thickness, pure and mixed samples, and standoff experiments), the backscattered Raman spectra of different types of targets (including organic solutions, inorganic powders, and minerals) were tested. The multi-grating SHRS shows good performance for broad spectral range and high-resolution Raman detection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.57.009735DOI Listing

Publication Analysis

Top Keywords

spatial heterodyne
12
spectral range
12
heterodyne raman
8
multi-grating shrs
8
range resolution
8
backscattering raman
4
raman spectroscopy
4
multi-grating
4
spectroscopy multi-grating
4
multi-grating spatial
4

Similar Publications

Spatial heterodyne one-dimensional imaging spectrometer (SHIS) can simultaneously acquire hyperspectral information from different fields of view (FOVs). However, the dynamic range of SHIS is limited by the detector's performance. We propose a high dynamic range spatial heterodyne one-dimensional imaging spectroscopy (HD-SHIS) based on a digital micromirror device (DMD), which can control the exposure time of each FOV signal by adjusting the flip time of micromirrors on an M-bit DMD, realizing the simultaneous detection of strong and weak signals in FOVs with a theoretical improvement of the dynamic range by dB.

View Article and Find Full Text PDF
Article Synopsis
  • A technique is introduced for measuring the complex reflectivity of an optical cavity using two lasers: a resonant local oscillator laser and an auxiliary probe laser, both coupled to opposite ends of the cavity.
  • The method employs a heterodyne sensing scheme to analyze the interference pattern between the lasers, allowing for the precise measurement of phase and amplitude.
  • This approach was successfully tested on a 19-meter cavity, yielding accurate measurements of the transmissivities of the mirrors and round-trip optical losses with an accuracy of several parts per million.
View Article and Find Full Text PDF

The formation of a plasma sheath on the surface of spacecraft or satellites during high-speed atmospheric entry is a significant factor that affects communication and radar detection. Experimental research apparatus for electromagnetic science can simulate this plasma sheath and study the interaction mechanisms between electromagnetic waves and plasma sheaths. Electron density is a crucial parameter for this research.

View Article and Find Full Text PDF

Quantum Enhanced Balanced Heterodyne Readout for Differential Interferometry.

Phys Rev Lett

August 2024

OzGrav, Centre for Gravitational Astrophysics, Research School of Physics and Research School of Astronomy and Astrophysics, Australian National University, Australian Capital Territory, Australia.

Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, quadrature-entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this Letter, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty.

View Article and Find Full Text PDF

High-resolution spectroscopy employing spatial heterodyne spectrographs (SHS) holds significant promise for forthcoming space missions, building upon its established track record in science applications. Notably, it offers exceptional performance and cost- effectiveness in the ultraviolet-visual (UV-Vis) region compared to contemporary instruments. SHS instruments provide high-resolution capabilities and substantially larger etendues than similar resolving power instruments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!