Here, reciprocity and Babinet's principles were applied to the design of integrated plasmonic structures on silicon photonic waveguides. Numerical analyses and near-field optical microscopy observations show that one of the hybrid photonic-plasmonic structures exhibits high confinement and enhancement of the electric field, and, through Babinet's principle, the magnetic field of its complementary structure is confined and enhanced as well. Reciprocally, due to the modification of the electric and magnetic local density of states, enhanced emission of electric and magnetic dipoles by Purcell effect were obtained into specific silicon photonic modes. Such structures can be advantageously implemented for on-chip integrated single-photon sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.009155 | DOI Listing |
ACS Nano
January 2025
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States.
Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.
View Article and Find Full Text PDFACS Nano
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.
Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.
Neuroimage
January 2025
Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan. Electronic address:
Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Physics, University of Ulsan, Ulsan, 44610, Republic of Korea.
The anisotropic properties of materials profoundly influence their electronic, magnetic, optical, and mechanical behaviors and are critical for a wide range of applications. In this study, the anisotropic characteristics of Ni-based van der Waals materials, specifically NiTe and its alloy NiTeSe, utilizing a combination of comprehensive scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations, are explored. Unlike 1T-NiTe, which exhibits trigonal in-plane symmetry, the substitution of Te with Se in NiTe (resulting in the NiTeSe alloy) induces a pronounced in-plane anisotropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!