We analyze the effects of aperture finiteness on interferograms recorded to unveil the modal content of optical beams in arbitrary bases using generalized interferometry. We develop a scheme for modal reconstruction from interferometric measurements that accounts for the ensuing clipping effects. Clipping-cognizant reconstruction is shown to yield significant performance gains over traditional schemes that overlook such effects that do arise in practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.35.001880 | DOI Listing |
Robust detection of interferometric fringes is critical for accurate sensing by self-mixing interferometric (SMI) displacement sensors. Mode-hopping of a laser diode (LD) can potentially diversify SMI fringes, transforming them from mono-modal to multimodal. Thus, fringe detection of a multimodal SMI signal becomes a bigger challenge as the relative strength of each mode may be different, leading to further diversity in the fringes belonging to each regime.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2018
We analyze the effects of aperture finiteness on interferograms recorded to unveil the modal content of optical beams in arbitrary bases using generalized interferometry. We develop a scheme for modal reconstruction from interferometric measurements that accounts for the ensuing clipping effects. Clipping-cognizant reconstruction is shown to yield significant performance gains over traditional schemes that overlook such effects that do arise in practice.
View Article and Find Full Text PDFOpt Lett
February 2012
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
We present a new multimode dispersion measurement technique based on the time-of-flight method. The modal delay and group velocity dispersion of all excited modes in a few-mode fiber can be measured simultaneously by a tunable pulsed laser and a high speed sampling oscilloscope. A newly designed higher-order-mode fiber with large anomalous dispersion in the LP(02) mode has been characterized using this method, and experimental results are in good agreement with the designed dispersion values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!