Fluorescence molecular tomography (FMT) has been a promising imaging tool because it allows an accurate localizaton and quantitative analysis of the fluorophore distribution in animals. It, however, is still a challenge since its reconstruction suffers from severe ill-posedness. This paper introduces a reconstruction frame based on three-way decisions (TWD) for the inverse problem of FMT. On the first stage, a reconstruction result on the whole region is obtained by a certain reconstruction algorithm. With TWD, the recovered result has been divided into three regions: fluorescent target region, boundary region, and background region. On the second stage, the boundary region and fluorescent target region have been combined into the permissible region of the target. Then a new reconstruction on the permissible region has been carried out and a new recovered result is obtained. With TWD again, the new result has been classified into three pairwise disjoint regions. And the new fluorescent target region is the final reconstructed result. Both numerical simulation experiments and a real mouse experiment are carried out to validate the feasibility and potential of the presented reconstruction frame. The results indicate that the proposed reconstuction strategy based on TWD can provide a good performance in FMT reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.35.001814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!