Hippocampal dentate spikes (DSs) are short-duration, large-amplitude fluctuations in hilar local field potentials and take place while resting and sleeping. During DSs, dentate gyrus granule cells increase firing while CA1 pyramidal cells decrease firing. Recent findings suggest DSs play a significant role in memory consolidation after training on a hippocampus-dependent, nonspatial associative learning task. Here, we aimed to find out whether DSs are important in other types of hippocampus-dependent learning tasks as well. To this end, we trained adult male Sprague-Dawley rats in a spatial reference memory task, a fixed interval task, and a pattern separation task. During a rest period immediately after each training session, we either let neural activity to take place as usual, timed electrical stimulation of the ventral hippocampal commissure (vHC) to immediately follow DSs, or applied the vHC stimulation during a random neural state. We found no effect of vHC stimulation on performance in the spatial reference memory task or in the fixed interval task. Surprisingly, vHC stimulation, especially contingent on DSs, improved performance in the pattern separation task. In conclusion, the behavioral relevance of hippocampal processing and DSs seems to depend on the task at hand. It could be that in an intact brain, offline memory consolidation by default involves associating neural representations of temporally separate but related events. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation). NEW & NOTEWORTHY The behavioral relevance of dentate spikes seems to depend on the learning task at hand. We suggest that dentate spikes are related to associating neural representations of temporally separate but related events within the dentate gyrus. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation).

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00696.2018DOI Listing

Publication Analysis

Top Keywords

pattern separation
20
dentate spikes
16
memory consolidation
12
associative learning
12
vhc stimulation
12
task
9
dentate gyrus
8
learning task
8
spatial reference
8
reference memory
8

Similar Publications

and formula alleviates depressive behaviors microglia regulation in an unpredictable chronic mild stress animal model.

J Tradit Complement Med

January 2025

Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.

Background And Aim: (CM) and (AM) are medicinal mushrooms with potential applications in the treatment of mood disorders, including depression and anxiety. While research suggests that both CM and AM possess anti-inflammatory properties and hold potential for treating depression when administered separately, there is limited knowledge about their efficacy when combined in a formula, as well as the underlying mechanism involving the modulation of microglia.

Experimental Procedure: Rats received oral administrations of the low-dose formulation, medium-dose formulation, and high-dose formulation over 28 consecutive days as part of the UCMS protocols.

View Article and Find Full Text PDF

Objective: To examine associations between student perceptions of school physical activity best practices and accelerometer-based physical activity during school days.

Methods: The sample was 758 students in grades 3rd-4th or 6th-7th (female-58 %; 31 % Black/African American) from 33 schools across five school districts in a Mid-Atlantic state in the U.S.

View Article and Find Full Text PDF

Modeling virus filtration: Materials, applications, and mechanism.

iScience

January 2025

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development.

View Article and Find Full Text PDF

Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.

Mater Horiz

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.

Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%).

View Article and Find Full Text PDF

High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!