The need to understand and describe permeation through membranes has driven the development of many well-established transport models. The modeling parameters such as solubility, diffusivity, and permeability represent the intrinsic nature of molecular interactions between membrane and permeants. In this study, we report a simulation and analysis methodology for liquid permeation. On the basis of a single simulation of liquid sorption process into a membrane, the solubility and diffusivity are estimated simultaneously; then, the permeability is predicted by the solution-diffusion model. The methodology is applied to water permeation through two representative membranes: a polymer of intrinsic microporosity (PIM-1) and a zeolitic imidazolate framework (ZIF-96). For amorphous PIM-1 membrane, the predicted water permeability agrees perfectly with simulation. For crystalline ZIF-96 membrane, water permeability is fairly well predicted. Furthermore, water dynamics in the membranes is analyzed by simulation trajectories and water structure is characterized by hydrogen bonds. Together with these microscopic insights, this study provides a simple theoretical approach to quantitatively describe water sorption, diffusion, and permeation, and it can be further applied to other liquid permeation (e.g., organic solvent nanofiltration).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b09785 | DOI Listing |
J Colloid Interface Sci
January 2025
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:
Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China. Electronic address:
Lactic acid bacteria (LAB) are well-known for its expertise in synthesizing exopolysaccharides (EPS), which are linked to significant health benefits, such as its prebiotic effects and ability to modulate the immune system. However, the synthesis of EPS is hindered by low yields. The objective of this study was to investigate the impact of co-cultivation on EPS output by Weissella confusa XG-3 when paired with Candida shehatae.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.
Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.
Field-effect transistor (FET) biosensors have significantly attracted interest across various disciplines because of their high sensitivity, time-saving, and label-free characteristics. However, it remains a grand challenge to interface the FET biosensor with complex liquid media. Unlike standard liquid electrolytes containing purified protein content, directly exposing FET biosensors to complex biological fluids introduces significant sensing noise, which is caused by the abundance of nonspecific proteins, viruses, and bacteria that adsorb to the biosensor surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!